Skip to main content
Log in

Optimal separation of phenol from model oils by forming deep eutectic solvents with quaternary ammonium salts

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Various quaternary ammonium salts are used to separate phenol from model oil by forming deep eutectic solvents (DESs). The results indicate that the types of quaternary ammonium salt ions and the molecular symmetry of quaternary ammonium have obvious influence on recovery for phenol. Tetraethylammonium chloride (TEAC), which contains suitable ions and symmetry reveals highest phenol recovery in the model oil. The separation mechanism is discussed and the structures of DESs (TEAC/Phenol) are proved on Fourier transform infrared transform (FTIR). To recycle TEAC, diethyl ether is used as anti-solvent to precipitate TEAC from TEAC/Phenol system. The structure of regeneration TEAC is proved on FTIR and 1H NMR. The recovery for phenol is decreased from 97.45% to 14.30% with the increase of regeneration times. The optimal separation condition was obtained by response surface methodology at 30 °C (separation temperature) for 40 min (separation time) with 3.75 g TEAC (mass of TEAC) in 10 mL model oil (phenol recovery: 99.3%). In contrast to the traditional methods to separate phenol, this proposed method avoids the use of alkalis and acid, and with less effluent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. H. Schobert and C. Song, Fuel, 81, 15 (2002).

    Article  CAS  Google Scholar 

  2. C. Amen-Chen, H. Pakdel and C. Roy, Biomass Bioenergy, 13, 25 (1997).

    Article  CAS  Google Scholar 

  3. J. Li, C. Wang and Z. Yang, J. Anal. Appl. Pyrol., 89, 218 (2010).

    Article  CAS  Google Scholar 

  4. A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheedand and V. Tambyrajah, Chem. Commun., 1, 70 (2003).

    Article  Google Scholar 

  5. B. Tang, H. Zhang and K. H. Row, J. Sep. Sci., 38, 1053 (2015).

    Article  CAS  Google Scholar 

  6. F. Kholiya, N. Bhatt, M. R. Rathod, R. Meena and K. Prasad, J. Sep. Sci., 38, 3170 (2015).

    Article  CAS  Google Scholar 

  7. A. P. Abbott, G. Capper, D. L. Davies and R. K. Rasheed, Chem. Eur. J., 10, 3769 (2004).

    Article  CAS  Google Scholar 

  8. A. P. Abbott, G. Capper, D. L. Davies, H. L. Munro, R. K. Rasheed and V. Tambyrajah, Chem. Commun., 19, 2010 (2001).

    Article  Google Scholar 

  9. A. P. Abbott, G. Capper, D. L. Davies and R. Rasheed, Inorg. Chem., 43, 3447 (2004).

    Article  CAS  Google Scholar 

  10. A. P. Abbott, K. E. Ttaib, K. S. Ryder and E. L. Smith, Trans. Inst. Met. Finish, 86, 234 (2008).

    Article  CAS  Google Scholar 

  11. A. P. Abbott, G. Capper, K. J. McKenzie, A. Glidle and K. S. Ryder, Phys. Chem. Chem. Phys., 8, 4214 (2006).

    Article  CAS  Google Scholar 

  12. A. L. Zhu, T. Jiang, B. X. Han, J. C. Zhang, Y. Xie and X. M. Ma, Green Chem., 9, 169 (2007).

    Article  CAS  Google Scholar 

  13. A. P. Abbott, P. M. Cullis, M. J. Gibson, R. C. Harris and E. Raven, Green Chem., 9, 868 (2007).

    Article  CAS  Google Scholar 

  14. M. Hayyan, F. S. Mjalli, M. A. Hashim and I. M. AlNashef, Fuel Process. Technol., 91, 116 (2010).

    Article  CAS  Google Scholar 

  15. K. Pang, Y. Hou, W. Wu, W. Guo, W. Peng and K. N. Marsh, Green Chem., 14, 2398 (2012).

    Article  CAS  Google Scholar 

  16. T. Gu, M. Zhang, T. Tan, J. Chen, Z. Li, Q. Zhang and H. Qiu, Chem. Commun., 50, 11749 (2014).

    Article  CAS  Google Scholar 

  17. G. Li, T. Zhu and Y. Lei, Korean J. Chem. Eng., 32, 2103 (2015).

    Article  CAS  Google Scholar 

  18. H. Xu, L. P. Sun, Y. Z. Shi, Y. H. Wu, B. Zhang and D. Q. Zhao, Biochem. Eng. J., 39, 66 (2008).

    Article  CAS  Google Scholar 

  19. Y. Sun, T. Li, J. Yan and J. Liu, Carbohydr. Polym., 80, 242 (2010).

    Article  CAS  Google Scholar 

  20. Y. Wu, S. W. Cui and J. X. Tang, Food Chem., 105, 1599 (2007).

    Article  CAS  Google Scholar 

  21. K. Zhong and Q. Wang, Carbohydr. Polym., 80, 19 (2010).

    Article  CAS  Google Scholar 

  22. T. Zhu and K. H. Row, Sep. Sci. Tecnol., 48, 1510 (2013).

    Article  CAS  Google Scholar 

  23. V. Kavitha and K. Palanivelu, Chemosphere, 55, 1235 (2004).

    Article  CAS  Google Scholar 

  24. D. Xiao, L. G. Hines, S. Li, R. A. Bartsch and E. L. Quitevis, J. Phys. Chem. B, 113, 6426 (2009).

    Article  CAS  Google Scholar 

  25. J. Golding, N. Hamid, D. R. MacFarlane, M. Forsyth, C. Forsyth, C. Collins and J. Huang, Chem. Mater., 13, 558 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Zhu or Kyung Ho Row.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, W., Liu, L., Li, G. et al. Optimal separation of phenol from model oils by forming deep eutectic solvents with quaternary ammonium salts. Korean J. Chem. Eng. 34, 814–821 (2017). https://doi.org/10.1007/s11814-016-0316-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0316-y

Keywords

Navigation