Skip to main content
Log in

Improvement of methane uptake inside graphene sheets using nitrogen, boron and lithium-doped structures: A hybrid molecular simulation

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We investigated the storage capacity of methane on the pristine and doped graphene sheets using hybrid molecular dynamics - grand canonical Monte Carlo simulation method. Methane adsorption on two parallel graphene sheets with various distances was estimated at various pressures. According to the isotherm curves, the maximum amount of adsorbed methane was observed for graphene sheets with a distance layer of 1.2 nm. This optimum structure was further doped separately with lithium, nitrogen and boron atoms in various atomic percentages to examine methane storage contents. Results showed that lithium and nitrogen-doped graphene sheets could enhance the methane storage capacity of graphene sheets whereas boron did not have any significant effect on the methane uptake. The minimum content of dopant atoms for lithium and nitrogen was estimated as 1/12 (lithium atoms/carbon atoms) and 18.5 atomic percentage, respectively, to meet new DOE’s target for methane uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Düren, L. Sarkisov, O. M. Yaghi and R. Q. Snurr, Langmuir, 20, 2683 (2004).

    Article  Google Scholar 

  2. S. Gadipelli and Z. X. Guo, Prog. Mater. Sci., 69, 1 (2015).

    Article  CAS  Google Scholar 

  3. T. Burchell and M. Rogers. SAE Technical Paper (2000).

    Google Scholar 

  4. S. Cavenati, C. A. Grande and A. E. Rodrigues, J. Chem. Eng. Data, 49, 1095 (2004).

    Article  CAS  Google Scholar 

  5. J. L. Vicente and A. G. Albesa. Description of Adsorbed Phases on Carbon Surfaces: A Comparative Study of Several Graphene Models, INTECH Open Access Publisher (2011).

    Google Scholar 

  6. C. Solar, A. G. Blanco, A. Vallone and K. Sapag, Natural Gas 205 (2010).

    Google Scholar 

  7. M. Sudibandriyo, Int. J. Eng. Technol., 11, 86 (2011).

    Google Scholar 

  8. Y. Wang, M. Hashim, C. Ercan, A. Khawajah and R. Othman, 21st Annual Saudi-Japan Symposium, November (2011).

    Google Scholar 

  9. P. A. Denis, Chem. Phys., 353, 79 (2008).

    Article  CAS  Google Scholar 

  10. M. Yamamoto, T. Itoh, H. Sakamoto, T. Fujimori, K. Urita, Y. Hattori, T. Ohba, H. Kagita, H. Kanoh and S. Niimura, Adsorption, 17, 643 (2011).

    Article  CAS  Google Scholar 

  11. P. Kowalczyk, L. Solarz, D. Do, A. Samborski and J. MacElroy, Langmuir, 22, 9035 (2006).

    Article  CAS  Google Scholar 

  12. A. Yamashita, Y. Mori, T. Oshima and Y. Baba, Carbon, 76, 469 (2014).

    Article  Google Scholar 

  13. S. Takenaka, Y. Shigeta and K. Otsuka, Chem. Lett., 32, 26 (2003).

    Article  CAS  Google Scholar 

  14. J. Kim, A. Maiti, L.-C. Lin, J. K. Stolaroff, B. Smit and R. D. Aines, Nat. Commun., 4, 1694 (2013).

    Article  Google Scholar 

  15. D. A. Gómez-Gualdrón, C. E. Wilmer, O. K. Farha, J. T. Hupp and R. Q. Snurr, J. Phys. Chem. C., 118, 6941 (2014).

    Article  Google Scholar 

  16. S. L. Candelaria, Y. Shao, W. Zhou, X. Li, J. Xiao, J.-G. Zhang, Y. Wang, J. Liu, J. Li and G. Cao, Nano Energy, 1, 195 (2012).

    Article  CAS  Google Scholar 

  17. D. Lozano-Castello, J. Alcaniz-Monge, M. De la Casa-Lillo, D. Cazorla-Amorós and A. Linares-Solano, Fuel, 81, 1777 (2002).

    Article  CAS  Google Scholar 

  18. M. Khorashadizadeh, M. N. Shahrak and A. Shahsavand, Korean J. Chem. Eng., 31, 1994 (2014).

    Article  CAS  Google Scholar 

  19. J.-J. Chen, W.-W. Li, X.-L. Li and H.-Q. Yu, Environ. Sci. Technol., 46, 10341 (2012).

    Article  CAS  Google Scholar 

  20. Y. Wang, C. Ercan, A. Khawajah and R. Othman, AIChE J., 58, 782 (2012).

    Article  CAS  Google Scholar 

  21. R. Heller and M. Zoback, Journal of Unconventional Oil and Gas Resources, 8, 14 (2014).

    Article  Google Scholar 

  22. L. Giraldo and J. C. Moreno-Piraján, Mater. Sci. Appl., 2, 331 (2011).

    CAS  Google Scholar 

  23. M. Molashahi and H. Hashemipour, Korean J. Chem. Eng., 29, 601 (2012).

    Article  CAS  Google Scholar 

  24. S. S. A. Syed-Hassan and M. S. M. Zaini, Korean J. Chem. Eng., 1 (2015).

    Google Scholar 

  25. K. Mosher, J. He, Y. Liu, E. Rupp and J. Wilcox, Int. J. Coal Geol., 109, 36 (2013).

    Article  Google Scholar 

  26. W. Zhao and Q. Y. Meng. Advanced Materials Research, Trans Tech Publ (2013).

    Google Scholar 

  27. B.-H. Kim, G.-H. Kum and Y.-G. Seo, Korean J. Chem. Eng., 20, 104 (2003).

    Article  CAS  Google Scholar 

  28. A. Hassani, M. T. H. Mosavian, A. Ahmadpour and N. Farhadian, J. Chem. Phys., 142, 234704 (2015).

    Article  Google Scholar 

  29. R. Kumar, V. M. Suresh, T. K. Maji and C. Rao, Chem. Commun., 50, 2015 (2014).

    Article  CAS  Google Scholar 

  30. S. Monemtabary, M. S. Niasar, M. Jahanshahi and A. A. Ghoreyshi, System, 2, 17 (2013).

    Article  Google Scholar 

  31. M. Rasoolzadeh, S. Fatemi, M. Gholamhosseini and M. A. Moosaviyan, Iran J. Chem. Chem. Eng., 27 (2008).

    Google Scholar 

  32. X. Zhang and W. Wang, Fluid Phase Equilib., 194, 289 (2002).

    Article  Google Scholar 

  33. K. H. Lee, J. Oh, J. G. Son, H. Kim and S.-S. Lee, ACS Appl. Mater. Interfaces, 6, 6361 (2014).

    Article  CAS  Google Scholar 

  34. L. Wang, Z. Sofer, J. Luxa and M. Pumera, J. Mater. Chem. C., 2, 2887 (2014).

    Article  CAS  Google Scholar 

  35. Z. Luo, S. Lim, Z. Tian, J. Shang, L. Lai, B. MacDonald, C. Fu, Z. Shen, T. Yu and J. Lin, J. Mater. Chem., 21, 8038 (2011).

    Article  CAS  Google Scholar 

  36. X. Li, H. Wang, J. T. Robinson, H. Sanchez, G. Diankov and H. Dai, J. Am. Chem. Soc., 131, 15939 (2009).

    Article  CAS  Google Scholar 

  37. S. Bai and X. Shen, RSC Adv., 2, 64 (2012).

    Article  CAS  Google Scholar 

  38. Z. Zhu and Q. Zheng, Appl. Therm. Eng., 108, 605 (2016).

    Article  CAS  Google Scholar 

  39. J. Dai, J. Yuan and P. Giannozzi, Appl. Phys. Lett., 95, 232105 (2009).

    Article  Google Scholar 

  40. L. Qu, Y. Liu, J.-B. Baek and L. Dai, ACS Nano, 4, 1321 (2010).

    Article  CAS  Google Scholar 

  41. K. Gopalakrishnan, K. Moses, P. Dubey and C. Rao, J. Mol. Struct., 1023, 2 (2012).

    Article  CAS  Google Scholar 

  42. Y. Wang, Y. Feng, G. Meng, X. Dong and X. Huang, Phys. Status Solidi B. (2015).

    Google Scholar 

  43. X. Fan, W. Zheng and J.-L. Kuo, ACS Appl. Mater. Interfaces, 4, 2432 (2012).

    Article  CAS  Google Scholar 

  44. L. Zhao, M. Levendorf, S. Goncher, T. Schiros, L. Palova, A. Zabet-Khosousi, K. T. Rim, C. Gutierrez, D. Nordlund and C. Jaye, Nano Lett., 13, 4659 (2013).

    Article  CAS  Google Scholar 

  45. Z. Yang and D. Cao, J. Phys. Chem. C., 116, 12591 (2012).

    Article  CAS  Google Scholar 

  46. J. Lan, D. Cao and W. Wang, Langmuir, 26, 220 (2009).

    Article  Google Scholar 

  47. G. K. Dimitrakakis, E. Tylianakis and G. E. Froudakis, Nano Lett., 8, 3166 (2008).

    Article  CAS  Google Scholar 

  48. P. Wu, Y. Qian, P. Du, H. Zhang and C. Cai, J. Mater. Chem., 22, 6402 (2012).

    Article  CAS  Google Scholar 

  49. N. P. Stadie, California Institute of Technology, PhD (2013).

    Google Scholar 

  50. X.-Q. Liu, Y. Xue, Z.-Y. Tian, J.-J. Mo, N.-X. Qiu, W. Chu and H.-P. Xie, Appl. Surf. Sci., 285, 190 (2013).

    Article  CAS  Google Scholar 

  51. C. Ewels, M. Glerup, V. Krstic, V. Basiu and E. Basiuk. In: Chemistry of Carbon Nanotubes, American Scientific Publishers (2007).

    Google Scholar 

  52. R. Lv, Q. Li, A. R. Botello-Méndez, T. Hayashi, B. Wang, A. Berkdemir, Q. Hao, A. L. Elías, R. Cruz-Silva and H. R. Gutiérrez, Sci. Rep., 2 (2012).

    Google Scholar 

  53. H. Tachikawa, T. Iyama and K. Azumi, Jpn. J. Appl. Phys., 50, 01BJ03 (2011).

    Article  Google Scholar 

  54. K. V. Kumar, K. Preuss, L. Lu, Z. X. Guo and M. M. Titirici, J. Phys. Chem. C., 119, 22310 (2015).

    Article  CAS  Google Scholar 

  55. L. Niu, Z. Li, W. Hong, J. Sun, Z. Wang, L. Ma, J. Wang and S. Yang, Electrochim. Acta, 108, 666 (2013).

    Article  CAS  Google Scholar 

  56. X. Xu, T. Yuan, Y. Zhou, Y. Li, J. Lu, X. Tian, D. Wang and J. Wang, Int. J. Hydrogen Energy, 39, 16043 (2014).

    Article  CAS  Google Scholar 

  57. A. Hassani, M. T. H. Mosavian, A. Ahmadpour and N. Farhadian, Comput. Theor. Chem., 1084, 43 (2016).

    Article  CAS  Google Scholar 

  58. J. Zheng, Z. Ren, P. Guo, L. Fang and J. Fan, Appl. Surf. Sci., 258, 1651 (2011).

    Article  CAS  Google Scholar 

  59. W. Bao, J. Wan, X. Han, X. Cai, H. Zhu, D. Kim, D. Ma, Y. Xu, J. N. Munday and H. D. Drew, Nat. Commun., 5 (2014).

    Google Scholar 

  60. S. Yang, X. Feng, X. Wang and K. Müllen, Angew. Chem. Int. Ed., 50, 5339 (2011).

    Article  CAS  Google Scholar 

  61. G. Yang, H. Han, T. Li and C. Du, Carbon, 50, 3753 (2012).

    Article  CAS  Google Scholar 

  62. D. Yu, L. Wei, W. Jiang, H. Wang, B. Sun, Q. Zhang, K. Goh, R. Si and Y. Chen, Nanoscale, 5, 3457 (2013).

    Article  CAS  Google Scholar 

  63. M. Zhou, X. Li, J. Cui, T. Liu, T. Cai, H. Zhang and S. Guan, Int. J. Electrochem. Sci., 7, 9984 (2012).

    CAS  Google Scholar 

  64. D. Deng, X. Pan, L. Yu, Y. Cui, Y. Jiang, J. Qi, W.-X. Li, Q. Fu, X. Ma and Q. Xue, Chem. Mater., 23, 1188 (2011).

    Article  CAS  Google Scholar 

  65. Y.-F. Lu, S.-T. Lo, J.-C. Lin, W. Zhang, J.-Y. Lu, F.-H. Liu, C.-M. Tseng, Y.-H. Lee, C.-T. Liang and L.-J. Li, ACS Nano, 7, 6522 (2013).

    Article  CAS  Google Scholar 

  66. D.-Y. Yeom, W. Jeon, N. D. K. Tu, S. Y. Yeo, S.-S. Lee, B. J. Sung, H. Chang, J. A. Lim and H. Kim, Sci. Rep., 5 (2015).

    Google Scholar 

  67. Y. Zhang, R. Sun, B. Luo and L. Wang, Electrochim. Acta, 156, 228 (2015).

    Article  CAS  Google Scholar 

  68. L. Zhang, Z.-Y. Zhang, R.-P. Liang, Y.-H. Li and J.-D. Qiu, Anal. Chem., 86, 4423 (2014).

    Article  CAS  Google Scholar 

  69. T. Lin, F. Huang, J. Liang and Y. Wang, Energy Environ. Sci., 4, 862 (2011).

    Article  Google Scholar 

  70. Z.-H. Sheng, H.-L. Gao, W.-J. Bao, F.-B. Wang and X.-H. Xia, J. Mater. Chem., 22, 390 (2012).

    Article  CAS  Google Scholar 

  71. M. Sahoo, K. Sreena, B. Vinayan and S. Ramaprabhu, Mater. Res. Bull., 61, 383 (2015).

    Article  CAS  Google Scholar 

  72. K. Sugawara, K. Kanetani, T. Sato and T. Takahashi, AIP Advances, 1, 022103 (2011).

  73. S. S. Han and S. S. Jang, Chem. Commun., 5427 (2009).

    Google Scholar 

  74. K. Malek and M. Sahimi, J. Chem. Phys., 132, 014310 (2010).

    Article  Google Scholar 

  75. D. van der Spoel, E. Lindahl, B. Hess, A. R. van Buuren, E. Apol, P. J. Meulenhoff, D. P. Tieleman, A. Sijbers, K. A. Feenstra and R. van Drunen, Gromacs User Manual (2010).

    Google Scholar 

  76. T. a. C. B. Group, VMD User’s Guide (2012).

    Google Scholar 

  77. G. P. Lithoxoos, L. D. Peristeras, G. C. Boulougouris and I. G. Economou, Mol. Phys., 110, 1153 (2012).

    Article  CAS  Google Scholar 

  78. J. Chandrasekhar, D. C. Spellmeyer and W. L. Jorgensen, J. Am. Chem. Soc., 106, 903 (1984).

    Article  CAS  Google Scholar 

  79. Z. Peng, C. S. Ewig, M.-J. Hwang, M. Waldman and A. T. Hagler, J. Phys. Chem. A, 101, 7243 (1997).

    Article  CAS  Google Scholar 

  80. O. N. Kalugin, O. V. Prezhdo and V. V. Chaban, Microscopic structure and dynamics of molecular liquids and electrolyte solutions confined by Carbon NanoTubes: Molecular dynamics simulations, INTECH Open Access Publisher (2011).

    Google Scholar 

  81. A. K. Rappé, C. J. Casewit, K. Colwell, W. Goddard Iii and W. Skiff, J. Am. Chem. Soc., 114, 10024 (1992).

    Article  Google Scholar 

  82. A. H. Mao and R. V. Pappu, J. Chem. Phys., 137, 064104 (2012).

    Article  Google Scholar 

  83. O. N. Kalugin, A. K. Adya, M. N. Volobuev and Y. V. Kolesnik, Phys. Chem. Chem. Phys., 5, 1536 (2003).

    Article  CAS  Google Scholar 

  84. V. Chaban and O. Kalugin, J. Mol. Liq., 145, 145 (2009).

    Article  CAS  Google Scholar 

  85. S. S. Han, A. C. van Duin, W. A. Goddard and H. M. Lee, J. Phys. Chem. A, 109, 4575 (2005).

    Article  CAS  Google Scholar 

  86. F. Cuadros, I. Cachadiña and W. Ahumada, Mol. Eng., 6, 319 (1996).

    Article  CAS  Google Scholar 

  87. L. Ortiz, B. Kuchta, L. Firlej, M. Roth and C. Wexler, Mater. Res. Express, 3, 055011 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nafiseh Farhadian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassani, A., Mosavian, M.T.H., Ahmadpour, A. et al. Improvement of methane uptake inside graphene sheets using nitrogen, boron and lithium-doped structures: A hybrid molecular simulation. Korean J. Chem. Eng. 34, 876–884 (2017). https://doi.org/10.1007/s11814-016-0300-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0300-6

Keywords

Navigation