Skip to main content

Advertisement

Log in

Fabrication of carbon nanotube-loaded TiO2@AgI and its excellent performance in visible-light photocatalysis

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Novel, visible light driven CNTs-TiO2@AgI hybrid materials were synthesized by a simple solvothermaldissolution-precipitation method, during which the acid vapor treated carbon nanotubes (CNTs) as template, AgI as sensitizer and TiO2 as the bridge unified them to form a ternary composite. The morphology and chemical components of as-prepared samples were characterized by high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). XRD and XPS characterizations indicated that anatase TiO2 and crystal AgI co-existed in the composite. HRTEM demonstrated CNTs were decorated with well-dispersed AgI and TiO2 nanoparticles (NPs), and TiO2 had an intimate connection with both AgI and CNTs. Diffusive reflectance UV-vis spectroscopy of CNTs-TiO2@AgI nanocomposite was extended to the whole UV-visible region due to adding of CNTs and AgI NPs. Degradation of Rhodamine B (RhB) polluted water using CNTs-TiO2@AgI NPs was carried out under visible light irradiation, and it showed higher degradation efficiency than CNTs-TiO2, TiO2@AgI, and CNTs@AgI NPs. The primary reason for the enhanced photocatalytic property was attributed to the synergic effect in CNTs-TiO2@AgI, which included the good adsorption ability and electrical conductivity of CNTs as well as the intimate connection and hetero-junctions among AgI, TiO2, and CNTs. Meanwhile, the as-prepared hybrid materials can be easily separated and reclaimed from the liquid phase, and the recycling tests indicated CNTs-TiO2@AgI had renewable performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Fujishima, X.T. Zhang and D.A. Tryk, Surf. Sci. Rep., 63, 515 (2008).

    Article  CAS  Google Scholar 

  2. A. Di Paola, E. Garcia-Lopez, G. Marci and L. Palmisano, J. Hazard. Mater., 211, 3 (2012).

    Article  Google Scholar 

  3. M. Ahmadi, P. Amiri and N. Amiri, Korean J. Chem. Eng., 32, 1327 (2015).

    Article  CAS  Google Scholar 

  4. H. Zhang, X. Fan, X. Quan, S. Chen and H. Yu, Environ. Sci. Technol., 45, 5731 (2011).

    Article  CAS  Google Scholar 

  5. M. Guan, C. Xiao, J. Zhang, S. Fan, R. An, Q. Cheng, J. Xie, M. Zhou, B. Ye and Y. Xie, J. Am. Chem. Soc., 135, 10411 (2013).

    Article  CAS  Google Scholar 

  6. Z. Xiong and X. S. Zhao, J. Am. Chem. Soc., 134, 5754 (2012).

    Article  CAS  Google Scholar 

  7. C. Karunakaran, S. Kalaivani and P. Vinayagamoorthy, Mater. Lett., 122, 21 (2014).

    Article  CAS  Google Scholar 

  8. D. Tsukamoto, Y. Shiraishi, Y. Sugano, S. Ichikawa, S. Tanaka and T. Hirai, J. Am. Chem. Soc., 134, 6309 (2012).

    Article  CAS  Google Scholar 

  9. H. M. Yadav, J. S. Kim and S. H. Pawar, Korean J. Chem. Eng., 33, 1989 (2016).

    Article  CAS  Google Scholar 

  10. M.R. Hoffmann, S.T. Martin, W. Choi and D.W. Bahnemann, Chem. Rev., 95, 69 (1995).

    Article  CAS  Google Scholar 

  11. A. Fujishima and K. Honda, Nature, 238, 37 (1972).

    Article  CAS  Google Scholar 

  12. Q. Wang, X.D. Shi, E.Q. Liu, J. J. Xu, J. C. Crittenden, Y. Zhang and Y.Q. Cong, Ind. Eng. Chem. Res., 55, 4897 (2016).

    Article  CAS  Google Scholar 

  13. C. An, W. Jiang, J. Wang, S. Wang, Z. Ma and Y. Li, Dalton Transactions, 42, 8796 (2013).

    Article  CAS  Google Scholar 

  14. X. B. Chen and C. Burda, J. Am. Chem. Soc., 130, 5018 (2008).

    Article  CAS  Google Scholar 

  15. Y. F. Ma, J. L. Zhang, B. Z. Tian, F. Chen and L. Z. Wang, J. Hazard. Mater., 182, 386 (2010).

    Article  CAS  Google Scholar 

  16. W.Q. Fan, Q. H. Lai, Q. H. Zhang and Y. Wang, J. Phys. Chem. C, 115, 10694 (2011).

    Article  CAS  Google Scholar 

  17. Y. Yao, G. Li, S. Ciston, R. M. Lueptow and K.A. Gray, Environ. Sci. Technol., 42, 4952 (2008).

    Article  CAS  Google Scholar 

  18. S. Kim and S. K. Lim, Appl. Catal. B-Environ., 84, 16 (2008).

    Article  CAS  Google Scholar 

  19. D.D. Yu, J. Bai, H.O. Liang, T. F. Ma and C. P. Li, J. Mol. Catal. a-Chem., 420, 1 (2016).

    Article  CAS  Google Scholar 

  20. K. Ullah, A. Ullah, A. Aldalbahi, J.D. Chung and W.C. Oh, J. Mol. Catal. a-Chem., 410, 242 (2015).

    Article  CAS  Google Scholar 

  21. C.Y. Yen, Y. F. Lin, C. H. Hung, Y. H. Tseng, C.C. Ma, M.C. Chang and H. Shao, Nanotechnology, 19, 219 (2008).

    Google Scholar 

  22. J.G. Yu, T.T. Ma and S.W. Liu, Phys. Chem. Chem. Phys., 13, 3491 (2011).

    Article  CAS  Google Scholar 

  23. S. Muduli, W. Lee, V. Dhas, S. Mujawar, M. Dubey, K. Vijayamohanan, S. H. Han and S. Ogale, Acs Appl. Mater. Inter., 1, 2030 (2009).

    Article  CAS  Google Scholar 

  24. A. Kongkanand, R. M. Dominguez and P.V. Kamat, Nano Lett., 7, 676 (2007).

    Article  CAS  Google Scholar 

  25. W. J. Lee, J. M. Lee, S.T. Kochuveedu, T. H. Han, H.Y. Jeong, M. Park, J. M. Yun, J. Kwon, K. No, D. H. Kim and S.O. Kim, Acs Nano, 6, 935 (2012).

    Article  CAS  Google Scholar 

  26. C.Y. Hsu, D. H. Lien, S.Y. Lu, C.Y. Chen, C. F. Kang, Y. L. Chueh, W. K. Hsu and J. H. He, Acs Nano, 6, 6687 (2012).

    Article  CAS  Google Scholar 

  27. M. Cargnello, M. Grzelczak, B. Rodriguez-Gonzalez, Z. Syrgiannis, K. Bakhmutsky, V. La Parola, L. M. Liz-Marzan, R. J. Gorte, M. Prato and P. Fornasiero, J. Am. Chem. Soc., 134, 11760 (2012).

    Article  CAS  Google Scholar 

  28. X.W. Wang, L.C. Yin and G. Liu, Chem. Commun., 50, 3460 (2014).

    Article  CAS  Google Scholar 

  29. H. L. Wang, J.T. Robinson, G. Diankov and H. J. Dai, J. Am. Chem. Soc., 132, 3270 (2010).

    Article  CAS  Google Scholar 

  30. Q. J. Xiang, J.G. Yu and M. Jaroniec, Chem. Soc. Rev., 41, 782 (2012).

    Article  CAS  Google Scholar 

  31. L. H. Huang, H. J. Wang, Y. L. Liu, Z.B. Jiao and Z. B. Shao, Prog. Chem., 22, 867 (2010).

    CAS  Google Scholar 

  32. H. Zhang, X. J. Lv, Y. M. Li, Y. Wang and J. H. Li, Acs Nano, 4, 380 (2010).

    Article  CAS  Google Scholar 

  33. G. Liu, J. C. Yu, G.Q. Lu and H. M. Cheng, Chem. Commun., 47, 6763 (2011).

    Article  CAS  Google Scholar 

  34. K. Woan, G. Pyrgiotakis and W. Sigmund, Adv. Mater., 21, 2233 (2009).

    Article  CAS  Google Scholar 

  35. K. F. Zhou, Y. H. Zhu, X. L. Yang, X. Jiang and C. Z. Li, New J. Chem., 35, 353 (2011).

    Article  CAS  Google Scholar 

  36. A. I. Hochbaum and P.D. Yang, Chem. Rev., 110, 527 (2010).

    Article  CAS  Google Scholar 

  37. A.G. Hu, S. Liu and W. B. Lin, Rsc. Adv., 2, 2576 (2012).

    Article  CAS  Google Scholar 

  38. S. Hoang, S. P. Berglund, N.T. Hahn, A. J. Bard and C.B. Mullins, J. Am. Chem. Soc., 134, 3659 (2012).

    Article  CAS  Google Scholar 

  39. H. Wang, J. Gao, T.Q. Guo, R.M. Wang, L. Guo, Y. Liu and J. H. Li, Chem. Commun., 48, 275 (2012).

    Article  CAS  Google Scholar 

  40. M. Abou Asi, C. He, M. H. Su, D. H. Xia, L. Lin, H.Q. Deng, Y. Xiong, R. L. Qiu and X.Z. Li, Catal. Today, 175, 256 (2011).

    Article  CAS  Google Scholar 

  41. R. Vinoth, P. Karthik, C. Muthamizhchelvan, B. Neppolian and M. Ashokkumar, Phys. Chem. Chem. Phys., 18, 5179 (2016).

    Article  CAS  Google Scholar 

  42. H. S. Liu, Y. H. Wang, C. C. Li and C.Y. Tai, Chem. Eng. J., 183, 466 (2012).

    Article  CAS  Google Scholar 

  43. R. Makiura, T. Yonemura, T. Yamada, M. Yamauchi, R. Ikeda, H. Kitagawa, K. Kato and M. Takata, Nat. Mater., 8, 476 (2009).

    Article  CAS  Google Scholar 

  44. Q. Wang, X.D. Shi, J. J. Xu, J. C. Crittenden, E.Q. Liu, Y. Zhang and Y.Q. Cong, J. Hazard. Mater., 307, 213 (2016).

    Article  CAS  Google Scholar 

  45. Y.Z. Li, H. Zhang, Z. M. Guo, J. J. Han, X. J. Zhao, Q.N. Zhao and S. J. Kim, Langmuir, 24, 8351 (2008).

    Article  CAS  Google Scholar 

  46. C. Hu, X. X. Hu, L. S. Wang, J. H. Qu and A.M. Wang, Environ. Sci. Technol., 40, 7903 (2006).

    Article  CAS  Google Scholar 

  47. D.Y. Wu and M.C. Long, Surf. Coat. Tech., 206, 1175 (2011).

    Article  CAS  Google Scholar 

  48. Y. Li, H. Zhang, Z. Guo, J. Han, X. Zhao, Q. Zhao and S.-J. Kim, Langmuir, 24, 8351 (2008).

    Article  CAS  Google Scholar 

  49. H. Shi, J. Chen, G. Li, X. Nie, H. Zhao, P.-K. Wong and T. An, ACS Appl. Mater. Interf., 5, 6959 (2013).

    Article  CAS  Google Scholar 

  50. Y.G. Xu, S.Q. Huang, H.Y. Ji, L.Q. Jing, M.Q. He, H. Xu, Q. Zhang and H. M. Li, Rsc. Adv., 6, 6905 (2016).

    Article  CAS  Google Scholar 

  51. L.X. Yang, S. L. Luo, Y. Li, Y. Xiao, Q. Kang and Q.Y. Cai, Environ. Sci. Technol., 44, 7641 (2010).

    Article  CAS  Google Scholar 

  52. J. Jiang, X. Zhang, P. B. Sun and L. Z. Zhang, J. Phys. Chem. C, 115, 20555 (2011).

    Article  CAS  Google Scholar 

  53. Y. An, J. Hou, Z.Y. Liu and B. H. Peng, Mater. Chem. Phys., 148, 387 (2014).

    Article  CAS  Google Scholar 

  54. J. Ming, Y.Q. Wu, Y. C. Yu and F.Y. Zhao, Chem. Commun., 47, 5223 (2011).

    Article  CAS  Google Scholar 

  55. T.W. Ebbesen, P. M. Ajayan, H. Hiura and K. Tanigaki, Nature, 367, 519 (1994).

    Article  Google Scholar 

  56. H. Xu, J. Yan, Y. G. Xu, Y.H. Song, H. M. Li, J. X. Xia, C. J. Huang and H. L. Wan, Appl. Catal. B-Environ., 129, 182 (2013).

    Article  CAS  Google Scholar 

  57. W. Sun, Y.Z. Li, W.Q. Shi, X. J. Zhao and P.F. Fang, J. Mater. Chem., 21, 9263 (2011).

    Article  CAS  Google Scholar 

  58. L. Cai, T. Xu, J.Y. Shen and W. X. Xiang, Mat. Sci. Semicon. Proc., 37, 19 (2015).

    Article  CAS  Google Scholar 

  59. Y. An, L. Yang, J. Hou, Z.Y. Liu and B. H. Peng, Opt. Mater., 36, 1390 (2014).

    Article  CAS  Google Scholar 

  60. D.A. Reddy, J. Choi, S. Lee, R. Ma and T. K. Kim, Rsc. Adv., 5, 67394 (2015).

    Article  CAS  Google Scholar 

  61. H.X. Shi, J.Y. Chen, G.Y. Li, X. Nie, H. J. Zhao, P. K. Wong and T. C. An, Acs Appl. Mater. Inter., 5, 6959 (2013).

    Article  CAS  Google Scholar 

  62. J. H. Yi, L. L. Huang, H. J. Wang, H. Yu and F. Peng, J. Hazard. Mater., 284, 207 (2015).

    Article  CAS  Google Scholar 

  63. J.X. Liu, Y. L. Luan, C. H. An, J. Zhang, D. S. Wang and Y.D. Li, Chemcatchem, 7, 2918 (2015).

    Article  CAS  Google Scholar 

  64. J.B. Joo, Q. Zhang, M. Dahl, I. Lee, J. Goebl, F. Zaera and Y.D. Yin, Energy Environ. Sci., 5, 6321 (2012).

    Article  CAS  Google Scholar 

  65. H.Y. Liu, J.B. Joo, M. Dahl, L.S. Fu, Z.Z. Zeng and Y.D. Yin, Energy Environ. Sci., 8, 286 (2015).

    Article  CAS  Google Scholar 

  66. Z. H. Fan, F. M. Meng, M. Zhang, Z.Y. Wu, Z.Q. Sun and A. X. Li, Appl. Surf. Sci., 360, 298 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Banghua Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., An, Y., Dai, B. et al. Fabrication of carbon nanotube-loaded TiO2@AgI and its excellent performance in visible-light photocatalysis. Korean J. Chem. Eng. 34, 476–483 (2017). https://doi.org/10.1007/s11814-016-0278-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0278-0

Keywords

Navigation