Skip to main content

Advertisement

Log in

Optimization of fluoride adsorption onto natural and modified pumice using response surface methodology: Isotherm, kinetic and thermodynamic studies

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Natural pumice (NP), FeCl3·6H2O modified pumice (FEMP) and hexadecyl trimethyl ammonium bromide (HDTM.Br) modified pumice (HMP) were used for fluoride adsorption. The effect of pH (3-11), initial concentration (2-15mg/L), and adsorbent dosage (0.2-0.8 g/L) on the defluoridation was optimized by using central composite design (CCD) in the response surface methodology (RSM). Results showed optimum condition in the pH=3, initial concentration=2mg/L, and adsorbent dosage=0.71, 0.75, 0.70 g/L with the maximum removal efficiency of 9.39, 76.45, and 95.09% for NP, FEMP, and HMP, respectively. The adsorption equilibrium and kinetic data was in good agreement with Freundlich and pseudo-second order reaction. Thermodynamic parameters indicated a non-spontaneous nature for NP and spontaneous nature for FEMP and HMP. Positive enthalpy illustrated the endothermic nature of the process. On the basis of results, modification of pumice led to an increase in the fluoride removal efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. R. Lide, Crc handbook of chemistry and physics, CRC Press (2004).

    Google Scholar 

  2. WHO, Guidelines for drinking-water quality, World Health Organization (2011).

  3. M. Islam and R. Patel, Chem. Eng. J., 169, 68 (2011).

    Article  CAS  Google Scholar 

  4. S. Ghorai and K. K. Pant, Sep. Purif. Technol., 42, 265 (2005).

    Article  CAS  Google Scholar 

  5. K. Hu and J. M. Dickson, J. Membr. Sci., 279, 529 (2006).

    Article  CAS  Google Scholar 

  6. D. Ghosh, C. R. Medhi and M. K. Purkait, Chemosphere, 73, 1393 (2008).

    Article  CAS  Google Scholar 

  7. P. Sehn, Desalination, 223, 73 (2008).

    Article  CAS  Google Scholar 

  8. N. Viswanathan and S. Meenakshi, J. Hazard. Mater., 162, 920 (2009).

    Article  CAS  Google Scholar 

  9. L. A. Richards, M. Vuachère and A. Schäfer, Desalination, 261, 331 (2010).

    Article  CAS  Google Scholar 

  10. T. Zhang, H. Yu, Y. Zhou, J. Rong, Z. Mei and F. Qiu, Korean J. Chem. Eng., 33, 720 (2016).

    Article  CAS  Google Scholar 

  11. R. Buamah, C. A. Oduro and M. H. Sadik, J. Environ. Chem. Eng., 4, 250 (2016).

  12. Y. Zhang, D. Wang, B. Liu, X. Gao, W. Xu, P. Liang and Y. Xu, Am. J. Anal. Chem., 4, 48 (2013).

    Article  Google Scholar 

  13. M. Kitis, S. Kaplan, E. Karakaya, N. Yigit and G. Civelekoglu, Chemosphere, 66, 130 (2007).

    Article  CAS  Google Scholar 

  14. Gh. Asgari, B. Roshani and Gh. Ghanizadeh, J. Hazard. Mater., 217, 123 (2012).

    Article  Google Scholar 

  15. J. P. Wang, Y. Z. Chen, X. W. Ge and H. Q. Yu, Colloids Surf., A., 302, 204 (2007).

    CAS  Google Scholar 

  16. R. H. Myers, D. C. Montgomery and C. M. Anderson-Cook, Response surface methodology: Process and product optimization using designed experiments, John Wiley & Sons (2016).

    Google Scholar 

  17. K. Yaghmaeian, S. Silva Martinez, M. Hoseini and H. Amiri, Desalin. Water Treat., 57, 57 (2016).

    Google Scholar 

  18. M. Mourabet, A. El Rhilassi, H. El Boujaady, M. Bennani-Ziatni, R. El Hamri and A. Taitai, J. Saudi Chem. Soc., 19, 603 (2015).

  19. A. Hassani, R. Darvishi Cheshmeh Soltani, M. Kiransan, S. Karaca, C. Karaca and A. Khataee, Korean J. Chem. Eng., 33, 178 (2016).

    Article  CAS  Google Scholar 

  20. J. D. Cui, Korean J. Chem. Eng., 27, 174 (2010).

    Article  CAS  Google Scholar 

  21. T. Tshukudu, H. Zheng, X. Hua, J. Yang, M. Tan, J. Ma, Y. Sun and G. Zhu, Korean J. Chem. Eng., 30, 649 (2013).

    Article  CAS  Google Scholar 

  22. J. Órfão, A. Silva, J. Pereira, S. Barata, I. Fonseca, P. Faria and M. Pereira, J. Colloid Interface Sci., 296, 480 (2006).

    Article  Google Scholar 

  23. R Core Team, A Language and Environment for Statistical Computing and R Foundation for Statistical Computing, Vienna, Austria (2015). Available from: <http://www.r-project.org/>.

    Google Scholar 

  24. R. V. Lenth, J. Stat. Software, 32, 1 (2009).

    Article  Google Scholar 

  25. APHA, AWWA and WEF, Standard methods for the examination of water and wastewater, American Public Health Association (2005).

  26. Gh. Ghanizadeh and Gh. Asgari, React. Kinet. Mech. Cat., 102, 127 (2011).

    Article  CAS  Google Scholar 

  27. S. Wang and Z. Zhu, J. Hazard. Mater., 136, 946 (2006).

    Article  CAS  Google Scholar 

  28. M. Li, X. Zhu, F. Zhu, G. Ren, G. Cao and L. Song, Desalination, 271, 295 (2011).

    Article  CAS  Google Scholar 

  29. M. Noori Sepehr, V. Sivasankar, M. Zarrabi and M. S. Kumar, Chem. Eng. J., 228, 192 (2013).

    Article  Google Scholar 

  30. M. R. Samarghandi, M. Zarrabi, A. Amrane, M. M. Soori and M. Noori Sepehr, Environ. Eng. Manage. J., 12, 2137 (2013).

  31. M. Malakootian, M. Moosazadeh, N. Yousefi and A. Fatehizadeh, Afr. J. Environ. Sci. Technol., 5, 299 (2011).

    CAS  Google Scholar 

  32. M. Noori Sepehr, M. Zarrabi, H. Kazemian, A. Amrane, K. Yaghmaian and H. R. Ghaffari, Appl. Surf. Sci., 274, 295 (2013).

    Article  Google Scholar 

  33. R. E. Grim, Clay mineralogy, McGraw-Hill Book Compony (1968).

    Google Scholar 

  34. H. Yamada, S. Yokoyama, Y. Watanabe, H. Uno and K. Tamura, Sci. Technol. Adv. Mater., 6, 394 (2005).

    Article  CAS  Google Scholar 

  35. J. R. Stevens, R. V. Siriwardane and J. Logan, Energy Fuels, 22, 3070 (2008).

    Article  CAS  Google Scholar 

  36. H. Naeimi, A. Mohajeri, L. Moradi and A. Rashidi, Appl. Surf. Sci., 256, 631 (2009).

    Article  CAS  Google Scholar 

  37. H. Nourmoradi, A. Ebrahimi, Y. Hajizadeh, S. Nemati and A. Mohammadi, Int. J. Pharm. Technol., 8, 13337 (2016).

    CAS  Google Scholar 

  38. M. Faraji, E. Abooi Mehrizi, M. Sadani, M. Karimaei, E. Ghahramani, K. Ghadiri and M. S. Taghizadeh, Int. J. Environ. Health Eng., 1, 26 (2012).

    Article  Google Scholar 

  39. A. El Nemr, J. Hazard. Mater., 161, 132 (2009).

    Article  CAS  Google Scholar 

  40. R. Arasteh, M. Masoumi, A. M. Rashidi, L. Moradi, V. Samimi and S. T. Mostafavi, Appl. Surf. Sci., 256, 4447 (2010).

    Article  CAS  Google Scholar 

  41. C. S. Sundaram, N. Viswanathan and S. Meenakshi, J. Hazard. Mater., 155, 206 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Hadi Dehghani or Maryam Faraji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghani, M.H., Faraji, M., Mohammadi, A. et al. Optimization of fluoride adsorption onto natural and modified pumice using response surface methodology: Isotherm, kinetic and thermodynamic studies. Korean J. Chem. Eng. 34, 454–462 (2017). https://doi.org/10.1007/s11814-016-0274-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0274-4

Keywords

Navigation