Abstract
An optimized, ceramide-based, nanostructured lipid carrier (NLC) formulation was developed for isoliquiritigenin (ILTG), and its potential as a transdermal delivery system was evaluated. ILTG-loaded NLCs were prepared by blending solid (ceramide, cholesterol) and liquid lipids (caprylic/capric triglyceride) in various proportions using a hot homogenization and ultrasonication method. The physicochemical characteristics were investigated by DLS, ZP, EE%, TEM, DSC and XRD analyses and in vitro skin permeation studies. The results showed that the particle size of the formulation was 150.19–251.69 nm with a ZP>−20mV. The EE% was 56.45–89.97%. The NLC structure was influenced by lipid ratio, and increasing the caprylic/capric triglyceride ratio caused a less ordered structure, as confirmed by DSC. The XRD analysis indicated that ILTG was not in the crystalline state in all formulations. The skin permeation study showed that the ILTG-NLCs promoted ILTG permeation. In conclusion, ceramide-based NLCs could be a promising vehicle for the ILTG transdermal delivery of ILTG.
This is a preview of subscription content, access via your institution.
References
P. W. Wertz and B. Bergh, Chem. Phys. Lipids, 91, 85 (1988).
S. Grayson and P. M. Elias, J. Invest. Dermatol., 78, 128 (1982).
A. D. Nardo, P. Wertz, A. Giannetti and S. Seidenari, Acta. Derm. Venereol. Suppl. (Stockh), 78, 27 (1998).
S. Motta, M. Monti, S. Sesana, L. Mellesi, R. Ghidoni and R. Caputo, Arch. Dermatol., 130, 452 (1994).
K. Perisho, P. W. Wertz, K. C. Madison, M. E. Stewart and D. T. Downing, J. Invest. Dermatol., 90, 350 (1988).
W. Abraham and D. T. Downing, Pharm. Res., 9, 1415 (1992).
S. N. Park, M. H. Lee, S. J. Kim and E. R. Yu, Biochem. Biophys. Res. Commun., 435, 361 (2013).
D. H. Kim, W. R. Park, J. H. Kim, E. C. Cho, E. J. An, J. W. Kim and S. G. Oh, Colloids Surf., B., 94, 236 (2012).
X. Wu and R. H. Guy, J. Drug. Deliv. Sci. Technol., 19, 371 (2009).
Y. R. Neupane, M. Srivastava, N. Ahmad, N. Kumar and A. Bhatnagar, Int. J. Pharm., 477, 601 (2014).
W. S. Choi, H. I. Cho, H. Y. Lee, S. H. Lee and Y. W. Choi, J. Pharm. Invest., 40, 373 (2010).
J. Pardeike, A. Hommoss and R. H. Muller, Int. J. Pharm., 366, 170 (2009).
R. H. Muller, M. Radtke and S. A. Wissing, Int. J. Pharm., 242, 121 (2002).
A. Beloqui, M. A. Solinis, A. Rodriguez-Gascon, A. J. Almeida and V. Preat, Nanomedicine, 12, 143 (2016).
X. Zhao, W. Mei, M. Gong, W. Zuo, H. Bai and H. Dai, Molecules., 169, 775 (2011).
X. Zhang, E. D. Yeung, J. Wang, E. E. Panzhinskiy, C. Tong, W. Li and J. Li, Clin. Exp. Pharmacol. Physiol., 37, 841 (2010).
O. Nerya, J. Vaya, R. Musa, S. Izrael, R. Ben-Arie and S. Tamir, J. Agric. Food Chem., 51, 1201 (2003).
S. C. Kim, S. H. Byun, C. H. Yang, C. Y. Kim, J. W. Kim and S. G. Kim, Toxicology, 197, 239 (2004).
X. Y. Zhang, H. Qiao, J. M. Ni, Y. B. Shi and Y. Qiang, Eur. J. Pharm. Sci., 49, 411 (2013).
S. J. Kim, S. S. Kwon, S. H. Jeon, E. R. Yu and S. N. Park, Int. J. Cosmet. Sci., 36, 553 (2014).
S. H. Jeon, C. Y. Yoo and S. N. Park, Colloids Surfaces B: Biointerface., 129, 7 (2015).
S. S. Kwon, S. Y. Kim, B. J. Kong, K. J. Kim, G. Y. Noh, N. R. Im, J. W. Lim, J. H. Ha, J. Kim and S. N. Park, Int. J. Pharm., 483, 26 (2015).
S. S. Kwon, B. J. Kong and S. N. Park, Eur. J. Pharm. Biopharm., 92, 146 (2015).
Y. M. Jeong, J. H. Ha and S. N. Park, J. Ind. Eng. Chem., 35, 54 (2016).
V. Teeranachaideekul, P. Boonme, E. B. Souto, R. H. Müller and V. B. Junyaprasert, J. Control. Release., 128, 134 (2008).
K. Jores, W. Mehnert, M. Drechsler, H. Bunjes, C. Johann and K. Mäder, J. Control. Release., 95 217 (2004).
J. Y. Fang, C. L. Fang, C. H. Liu and Y. H. Su, Eur. J. Pharm. Biopharm., 70, 633 (2008).
R. H. Müller, C. Jacobs and O. Kayser, Adv. Drug Deliv. Rev., 47, 3 (2001).
L. R. Rodrigues, J. Colloid Interface Sci., 449, 304 (2015).
N. S. Ranpise, S. S. Korabu and V. N. Ghodake, Colloids Surf., B: Biointerfaces., 116, 81 (2014).
Y. C. Kuo and H. H. Chen, Int. J. Pharm., 365, 206 (2009).
P. K. Gaur, S. Mishra, A. Verma and N. Verma, J. Exp. Nanosci., 11, 38 (2016).
R. Shah, D. Eldridge, E. Palombo and I. Harding, SpringerInternational Publishing (2015).
A. Kovacevic, S. Savic, G. Vuleta, R. H. Müller and C. M. Keck, Int. J. Pharm., 406, 163 (2011).
S. B. Han, S. S. Kwon, Y. M. Jeong, E. R. Yu and S. N. Park, Int. J. Cosmet. Sci., 36, 588 (2014).
B. Li, B. Liu, J. Li, H. Xiao, J. Wang and G. Liang, Int. J. M. Sci., 16, 17999 (2015).
Y. R. Neupane, M. Srivastava, N. Ahmad, N. Kumar, A. Bhatnagar and K. Kohli, Int. J. Pharm., 477, 601 (2014).
R. N. Shamma and M. H. Aburahma, Int. J. Nanomedicine., 9, 5449 (2014).
M. Pradhan, D. Singh and M. R. Singh, Chem. Phys. Lipids, 186, 9 (2015).
H. Chen, Y. Wang, Y. Zhai, G. Zhai, Z. Wang and J. Liu, Colloids Surf., A: Physicochem. Eng. Asp., 465, 130 (2015).
E. B. Souto, S. A. Wissing, C. M. Barbosa and R. H. Müller, Int. J. Pharm., 278, 71 (2004).
Y. Zhai and G. Zhai, J. Control. Release., 193, 90 (2014).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Noh, G.Y., Suh, J.Y. & Park, S.N. Ceramide-based nanostructured lipid carriers for transdermal delivery of isoliquiritigenin: Development, physicochemical characterization, and in vitro skin permeation studies. Korean J. Chem. Eng. 34, 400–406 (2017). https://doi.org/10.1007/s11814-016-0267-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11814-016-0267-3
Keywords
- Nanostructured Lipid Carrier
- Transdermal Delivery System
- Ceramide
- Isoliquiritigenin
- MEL