Skip to main content
Log in

Carbonization and CO2 activation of scrap tires: Optimization of specific surface area by the Taguchi method

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This research demonstrates the production of activated carbon from scrap tires via physical activation with carbon dioxide. A newly constructed apparatus was utilized for uninterrupted carbonization and activation processes. Taguchi experimental design (L16) was applied to conduct the experiments at different levels by altering six operating parameters. Carbonization temperature (550–700 °C), activation temperature (800–950 °C), process duration (30–120 min), CO2 flow rate (400 and 600 cc/min) and heating rate (5 and 10 °C/min) were the variables examined in this study. The effect of parameters on the specific surface area (SSA) of activated carbon was studied, and the influential parameters were identified employing analysis of variance (ANOVA). The optimum conditions for maximum SSA were: carbonization temperature=650 °C, carbonization time=60 min, heating rate=5 °C/min, activation temperature= 900 °C, activation time=60 min and CO2 flow rate=400 cc/min. The most effective parameter was activation temperature with an estimated impact of 49%. The activated carbon produced under optimum conditions was characterized by pore and surface structure analysis, iodine adsorption test, ash content, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The process yield for optimized activated carbon was 13.2% with the following properties: specific surface area=437 m2/g, total pore volume=0.353 cc/g, iodine number=404.7 mg/g and ash content=13.9% along with an amorphous structure and a lot of oxygen functional groups. These properties are comparable to those of commercial activated carbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Martínez, N. Puy, R. Murillo, T. García, M. V. Navarro and A. M. Mastral, Renew. Sust. Energy Rev., 23, 179 (2013).

    Article  Google Scholar 

  2. Managing end-of-life-tires-full report, World Business Council for Sustainable Development (November 2008).

  3. P. Parthasarathy, H. S. Choi, H. C. Park, J. G. Hwang, H. S. Yoo, B.-K. Lee and M. Upadhyay, Korean J. Chem. Eng., 33, 2268 (2016).

    Article  CAS  Google Scholar 

  4. O. Onay and H. Koca, Fuel, 150, 169 (2015).

    Article  CAS  Google Scholar 

  5. E. Commission, Landfill of waste directive, council directive 1999/ 31/ec, European Commission, Brussels (1999).

    Google Scholar 

  6. P. Pipilikaki, M. Katsioti, D. Papageorgiou, D. Fragoulis and E. Chaniotakis, Cement Concrete Res., 27, 843 (2005).

    Article  CAS  Google Scholar 

  7. E. L. Mui, D. C. Ko and G. McKay, Carbon, 42, 2789 (2004).

    Article  CAS  Google Scholar 

  8. J. A. Conesa, A. Gálvez, F. Mateos, I. Martín-Gullón and R. I. Fon, J. Hazard. Mater., 158, 585 (2008).

    Article  CAS  Google Scholar 

  9. F. Carrasco, Y. Gningue and M. Heitz, Environ. Technol., 19, 461 (1998).

    Article  CAS  Google Scholar 

  10. A. Benazzouk, O. Douzane, T. Langlet, K. Mezreb, J. M. Roucoult and M. Quéneudec, Cement Concrete Comp., 29, 732 (2007).

    Article  CAS  Google Scholar 

  11. M. Arabani, S. M. Mirabdolazimi and A. R. Sasani, Constr. Build. Mater., 24, 1060 (2010).

    Article  Google Scholar 

  12. F. J. Navarro, P. Partal, F. Rancisco, J. Martínez-Boza and C. Gallegos, Polymer Testing, 29, 588 (2010).

    Article  CAS  Google Scholar 

  13. A. Fernández, C. Barriocanal and R. Alvarez, J. Hazard. Mater., 203, 236 (2012).

    Article  Google Scholar 

  14. M. Betancur, J. D. Martínez and R. Murillo, J. Hazard. Mater., 168, 882 (2009).

    Article  CAS  Google Scholar 

  15. O. Chan, W. Cheung and G. McKay, Carbon, 49, 4674 (2011).

    Article  CAS  Google Scholar 

  16. A. Alsaleh and M. L. Sattler, Curr. Sust. Renewe. Energy Rep., 1, 129 (2014).

    CAS  Google Scholar 

  17. T. A. Saleh and V. K. Gupta, Adv. Colloid Interface, 211, 93 (2014).

    Article  CAS  Google Scholar 

  18. B. Acevedo and C. Barriocanal, Fuel Process. Technol., 134, 275 (2015).

    Article  CAS  Google Scholar 

  19. B. Acevedo, C. Barriocanal, I. Lupul and G. Gryglewicz, Fuel, 151, 83 (2015).

    Article  CAS  Google Scholar 

  20. R. Acosta, C. Tavera, P. Gauthier-Maradei and D. Nabarlatz, Int. J. Chem. React. Eng., 13, 189 (2015).

    CAS  Google Scholar 

  21. M. Betancur, J. D. Martínez and R. Murillo, J. Hazard. Mater., 168, 882 (2009).

    Article  CAS  Google Scholar 

  22. Y. Ngernyen, C. Tangsathitkulchai and M. Tangsathitkulchai, Korean J. Chem. Eng., 23, 1046 (2006).

    Article  CAS  Google Scholar 

  23. G. Wu, T.-s. Jeong, C.-H. Won and L. Cui, Korean J. Chem. Eng., 27, 1476 (2010).

    Article  CAS  Google Scholar 

  24. P. Parthasarathy and S. Narayanan, Korean J. Chem. Eng., 32, 2236 (2015).

    Article  CAS  Google Scholar 

  25. H.-Y. Kang, S.-S. Park and Y.-S. Rim, Korean J. Chem. Eng., 23, 948 (2006).

    Article  CAS  Google Scholar 

  26. J. M. Dias, M. Alvim-Ferraz, M. F. Almeida, J. Rivera-Utrilla and M. Sánchez-Polo, J. Environ. Manage., 85, 833 (2007).

    Article  CAS  Google Scholar 

  27. C.-I. Su, Z.-L. Zeng, C.-C. Peng and C.-H. Lu, Fiber. Polym., 13, 21 (2012).

    Article  CAS  Google Scholar 

  28. E. Ekrami, F. Dadashian and M. Soleimani, Fiber. Polym., 15, 1855 (2014).

    Article  CAS  Google Scholar 

  29. A. Esfandiari, T. Kaghazchi and M. Soleimani, J. Taiwan Inst. Chem. Eng., 43, 631 (2012).

    Article  CAS  Google Scholar 

  30. E. L. K. Mui, W. H. Cheung, M. Valix and G. McKay, Micropor. Mesopor. Mater., 130, 287 (2010).

    Article  CAS  Google Scholar 

  31. B. G. V. K. Gupta, A. Rastogi, S. Agarwal and A. Nayak, J. Hazard. Mater., 186, 891 (2001).

    Article  Google Scholar 

  32. G. S. Miguel, G. D. Fowler, M. Dall’Orso and C. J. Sollars, J. Chem. Technol. Biot., 77, 1 (2002).

    Article  Google Scholar 

  33. R. Helleur, N. Popovic, M. Ikura, M. Stanciulescu and D. Liu, J. Anal. Appl. Pyrol., 58, 813 (2001).

  34. M. Alexandre-Franco, C. Fernández-González, A. Macías-García and V. Gómez-Serrano, Adsorption, 14, 591 (2008).

    Article  CAS  Google Scholar 

  35. G. Skodras, I. Diamantopoulou, A. Zabaniotou, G. Stavropoulos and G. Sakellaropoulos, Fuel Process. Technol., 88, 749 (2007).

    Article  CAS  Google Scholar 

  36. L. Li, S. Liu and T. Zhu, Tan Zhu, J. Environ. Sci., 22, 1273 (2010).

    Article  CAS  Google Scholar 

  37. A. Belgacem, R. Rebiai, H. Hadoun, S. Khemaissia and M. Belmedani, Environ. Sci. Pollut. R., 21, 684 (2014).

    Article  CAS  Google Scholar 

  38. V. Gupta, B. Gupta, A. Rastogi, S. Agarwal and A. Nayak, Water Res., 45, 4047 (2011).

    Article  CAS  Google Scholar 

  39. M. Hofman and R. Pietrzak, Chem. Eng. J., 170, 202 (2011).

    Article  CAS  Google Scholar 

  40. T. Brady, M. Rostam-Abadi and M. Rood, Gas Sep. Purif., 10, 97 (1996).

    Article  CAS  Google Scholar 

  41. I. Ali, Sep. Purif. Rev., 43, 175 (2014).

    Article  CAS  Google Scholar 

  42. I. Ali, Sep. Purif. Rev., 39, 95 (2010).

    Article  CAS  Google Scholar 

  43. I. Ali, M. Asim and T. A. Khan, J. Environ. Manage., 113, 170 (2012).

    Article  CAS  Google Scholar 

  44. I. Ali, Chem. Rev., 112, 5073 (2012).

    Article  CAS  Google Scholar 

  45. D. C. Montgomery, Design and analysis of experiments, John Wiley & Sons (2008).

    Google Scholar 

  46. R. C. Bansal and M. Goyal, Activated carbon adsorption, CRC Press (2010).

    Google Scholar 

  47. S. Brunauer, P. H. Emmett and E. Teller, J. Am. Chem. Soc., 60, 309 (1938).

    Article  CAS  Google Scholar 

  48. P. Barrett, L. Joyner and P. P. Halenda, J. Am. Chem. Soc., 73, 373 (1951).

    Article  CAS  Google Scholar 

  49. C. Saka, J. Anal. Appl. Pyrol., 95, 21 (2012).

    Article  CAS  Google Scholar 

  50. ASTM, Standard test method for apparent density of activated carbon, D2854-96, The American Society for Testing and Materials (2004).

  51. ASTM, Standard test method for pH of activated carbon, The American Society for Testing and Materials (2000).

  52. ASTM, Standard test method for total ash content of activated carbon, The American Society for Testing and Materials (2004).

  53. M. Ahmedna, W. Marshall and R. Rao, Bioresour. Technol., 71, 113 (2000).

    Article  CAS  Google Scholar 

  54. Z. Loloie, M. Soleimani and M. Mozaffarian, Optimisation of physical activation process for activated carbon production from tyre wastes, Int. J. of Global Warm., Inderscience Enterprises Ltd. (2015).

    Google Scholar 

  55. J. F. González, J. M. Encinar, C. M. González-García, E. Sabio, A. Ramiro, J. L. Canito and J. Gañán, Appl. Surf. Sci., 252, 5999 (2006).

    Article  Google Scholar 

  56. E. M. Suuberg and I. Aarna, Carbon, 45, 1719 (2007).

    Article  CAS  Google Scholar 

  57. G.-G. Choi, S.-H. Jung, S.-J. Oh and J.-S. Kim, Fuel Process. Technol., 123, 57 (2014).

    Article  CAS  Google Scholar 

  58. K. S. Sing, Pure Appl. Chem., 57, 603 (1985).

    Article  CAS  Google Scholar 

  59. J. Zhu, H. Liang, J. Fang, J. Zhu and B. Shi, Clean Soil Air Water, 39, 557 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Mozaffarian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loloie, Z., Mozaffarian, M., Soleimani, M. et al. Carbonization and CO2 activation of scrap tires: Optimization of specific surface area by the Taguchi method. Korean J. Chem. Eng. 34, 366–375 (2017). https://doi.org/10.1007/s11814-016-0266-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0266-4

Keywords

Navigation