Hydrodynamic characteristics of valve tray: Computational fluid dynamic simulation and experimental studies


In order to better understand the hydrodynamics of valve trays, air-water operation in an industrial scale tower with 1.2 m of diameter, consisting of two 14% valve trays, was studied. Experimental results of clear liquid height, froth height, average liquid holdup, dry pressure drop, total pressure drop, weeping and entrainment were investigated, and empirical correlations were presented. Then, a three-dimensional computational fluid dynamics (CFD) simulation in an Eulerian framework for valve tray with ANSYS CFX software was done. The drag coefficient, which was used in the CFD simulations, was calculated from the data obtained in the experiments. The simulation results were found to be in good agreement with experimental data at this industrial scale. The objective of the work was to study the extent to which experimental and CFD simulations must be used together as a prediction and design tool for industrial trays.

This is a preview of subscription content, access via your institution.


  1. 1.

    R.D. Scheffe and R.H. Weiland, Ind. Eng. Chem. Res., 26, 228 (1987).

    CAS  Article  Google Scholar 

  2. 2.

    H. Mustafa and E. Békássy-Molnár, Chem. Eng. Res. Des., 75(6), 620 (1997).

    CAS  Article  Google Scholar 

  3. 3.

    E. F. Wijn, Chem. Eng. J., 70, 143 (1998).

    CAS  Article  Google Scholar 

  4. 4.

    R. Brahem, A. Royon-Lebeaud, D. Legendre, M. Moreaud and L. Duval, Chem. Eng. Sci., 100, 23 (2013).

    CAS  Article  Google Scholar 

  5. 5.

    R. Krishna, J. M. van Baten, J. Ellenberger, A. P. Higler and R. Taylor, Chem. Eng. Res. Des., Trans. I. Chem. E, 77, 639 (1999).

    CAS  Google Scholar 

  6. 6.

    J. M. van Baten and R. Krishna, Chem. Eng. J., 77, 143 (2000).

    Article  Google Scholar 

  7. 7.

    G. Gesit, K. Nandakumar and K.T. Chuang, AIChE J., 49(4), 910 (2003).

    CAS  Article  Google Scholar 

  8. 8.

    S. Roshdi, N. Kasiri, S. H. Hashemabad and J. Ivakpour, Korean J. Chem. Eng., 30, 563 (2013).

    CAS  Article  Google Scholar 

  9. 9.

    A. Zarei, S. H. Hosseini and R. Rahimi, J. Taiwan Institute Chem. Engineers, 44, 27 (2013).

    CAS  Article  Google Scholar 

  10. 10.

    F. J. Zuiderweg, Chem. Eng. Sci., 37, 1441 (1982).

    CAS  Article  Google Scholar 

  11. 11.

    X.G. Li, D. X. Liu, S. M. Xu and H. Li, Chem. Engin. Proc., 48, 145 (2009).

    CAS  Article  Google Scholar 

  12. 12.

    T. Zarei, R. Rahimi and M. Zivdar, Korean J. Chem. Eng., 26(5), 1213 (2009).

    CAS  Article  Google Scholar 

  13. 13.

    B. Solari and R. L. Bell, AIChE J., 32, 640 (1986).

    CAS  Article  Google Scholar 

  14. 14.

    A. Alizadehdakhel, M. Rahimi and A. Abdulaziz Alsairafi, Comput. Chem. Eng., 34, 1 (2010).

    CAS  Article  Google Scholar 

  15. 15.

    S. Jiang, H. Gao, J. Sun, Y. Wang and L. Zhang, Chem. Eng. Process: Process Intensification, 52, 74 (2012).

    CAS  Article  Google Scholar 

  16. 16.

    M. Yufeng, J. Lijun, Z. Jiexu, C. Kui, W. Bin, W. Yanyang and Z. Jiawen, Chinese J. Chem. Eng., 23(10), 1603 (2015).

    Article  Google Scholar 

  17. 17.

    M. J. Lockett, Distillation Tray Fundamentals, Cambridge University Press, New York (1986).

    Google Scholar 

  18. 18.

    H. Z. Kister, Distillation design, Boston (1992).

    Google Scholar 

  19. 19.

    V.V. Ranade, Computational flow modeling for chemical reactor engineering, Academic Press (2001).

    Google Scholar 

  20. 20.

    D. Lakehal, Int. J. Multiphase Flow, 28, 823 (2002).

    CAS  Article  Google Scholar 

  21. 21.

    D. L. Bennett, R. Agrawal and P. J. Cook, AIChE J., 29, 434 (1983).

    CAS  Article  Google Scholar 

  22. 22.

    Y. Jianping and Y. Shurong, Adv. Mechanical Eng., 7(11), 1 (2015).

    Google Scholar 

  23. 23.

    R. Rahimi, A. Zarei, T. Zarei, H. N. Firoozsalari and M. Zivdar, In Distillation Absorption Conference, 407 (2010).

    Google Scholar 

  24. 24.

    E. Jia-qiang, L. Yu-qiang and G. Jin-ke, J. Cent. South Univ. Technol., 18, 1733 (2011).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Masoud Farsiani.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zarei, T., Farsiani, M. & Khorshidi, J. Hydrodynamic characteristics of valve tray: Computational fluid dynamic simulation and experimental studies. Korean J. Chem. Eng. 34, 150–159 (2017). https://doi.org/10.1007/s11814-016-0250-z

Download citation


  • Valve Tray
  • Computational Fluid Dynamics
  • Weeping
  • Entrainment
  • Clear Liquid Height