Skip to main content
Log in

Thermodynamics and kinetics study of defluoridation using Ca-SiO2-TiO2 as adsorbent: Column studies and statistical approach

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Fluoride contamination of water is a potential health and environmental hazard worldwide. This study focuses on defluoridation efficiency in aqueous system by novel adsorbents, i.e., calcium impregnated silica (Ca-SiO2) and calcium impregnated silica combined with titanium dioxide (Ca-SiO2-TiO2). Comparative batch study was carried out using both adsorbents Ca-SiO2 and Ca-SiO2-TiO2 for fluoride removal efficiency in different experimental conditions where it was observed that chemically modified Ca-SiO2-TiO2 acted as a better adsorbent for defluoridation than Ca-SiO2. Thus, further batch isotherm and kinetics studies were performed using Ca-SiO2-TiO2. The phenomenon of fluoride ion uptake is realized by Langmuir and Freundlich isotherm model. Langmuir isotherm shows satisfactory fit to the experimental data. The rate of adsorption shows that the pseudo-second-order rate fitted the adsorption kinetics better than the pseudo-first-order rate equation. The mechanism of adsorption process was illustrated by calculating Gibbs free energy, enthalpy and entropy from thermodynamic studies. To further confirm the applicability of the adsorbent, a fixed bed study was carried out in column mode. Thomas and bed-depth-service-time (BDST) model were well-fitted to the experimental results. The optimal operating conditions of defluoridation were found by using response surface methodology (RSM) with the help of Design Expert Software. The maximum percentage of fluoride removal was 92.41% in case of calcium impregnated silica combined with titanium dioxide (Ca-SiO2-TiO2). Thus, it may be concluded that chemically synthesized Ca-SiO2-TiO2 could be used as an environmentally and economically safe adsorbent for defluoridation of waste water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. M. G. Sujana, H. K. Pradhan and S. Anand, J. Hazard. Mater., 161, 120 (2009).

    Article  CAS  Google Scholar 

  2. WHO, Guidelines for Drinking Water Quality, 3rd Ed., Geneva (2004).

    Google Scholar 

  3. N. J. Chinoy, Indian J. Environ. Toxicol., 1, 17 (1991).

    Google Scholar 

  4. N. Chen, Z. Zhang, C. Feng, M. Li, D. Zhu and N. Sugiura, Mater. Chem. Phys., 125, 293 (2011).

    Article  CAS  Google Scholar 

  5. N. Das, P. Pattanaik and R. Das, J. Colloid Interface Sci., 292, 1 (2005).

    Article  CAS  Google Scholar 

  6. S. S. Tripathy, J. L. Bersillon and K. Gopal, Sep. Purif. Technol., 50, 310 (2006).

    Article  CAS  Google Scholar 

  7. L.M. Camacho, A. Torres, D. Saha and S. Deng, J. Colloid Interface Science, 349, 307 (2010).

    Article  CAS  Google Scholar 

  8. D. Mohan, K. P. Singh and V. K. Singh, J. Hazard. Mater., 152, 1045 (2008).

    Article  CAS  Google Scholar 

  9. G. Alagumuthu and M. Rajan, Hem. Ind., 64, 295 (2010).

    Article  CAS  Google Scholar 

  10. G. Alagumuthu, V. Veeraputhiran and R. Venkataraman, Hem. Ind., 65, 23 (2011).

    Article  CAS  Google Scholar 

  11. Y. LiuZheng and A. Wang, Ads. Sci. Technol., 28(10), 913 (2010).

    Article  Google Scholar 

  12. M. Mourabet, A. El. Rhilassi, H. El. Boujaady, M. Bennani-Ziatni, R. El. Hamri and A. Taitai, Appl. Water Sci., 258, 4402 (2012).

    CAS  Google Scholar 

  13. V. Hernández-Montoyaa, L.A. Ramírez-Montoya, A. Bonilla-Petriciolet and M. A. Montes-Moránb, Biochem. Eng. J., 62, 1 (2012).

    Article  Google Scholar 

  14. D. Bas and I. H. Boyaci, J. Food Eng., 78, 836 (2007).

    Article  CAS  Google Scholar 

  15. M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar and L.A. Escaleira, Talanta, 76, 965 (2008).

    Article  CAS  Google Scholar 

  16. I. Arslan-Alaton, G. Tureliamd and T. Olmez-Hanci, J. Photochem. Photobiol. A, 202, 142 (2009).

    Article  CAS  Google Scholar 

  17. K. Thirugnanasambandham, V. Sivakumar, J. Prakash Maran and S. Kandasamy, J. Korean Chem. Soc., 57, 761 (2013).

    Article  Google Scholar 

  18. M. Mohapatra, S. Anand, B.K. Mishra, D. E. Giles and P. Singh, J. Environ. Manage., 91, 67 (2009).

    Article  CAS  Google Scholar 

  19. E. Kumar and M. Sillanpää, Chem. Eng. J., 171, 811 (2011).

    Article  Google Scholar 

  20. A. Dabrowski, Adv. Colloid Interface Sci., 93, 135 (2001).

    Article  CAS  Google Scholar 

  21. H. Žabova, J. Sobek, V. Církva, O. Šolcova and M. Hájek, J. Solid State Chem., 182(12), 3387 (2009).

    Article  Google Scholar 

  22. I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918).

    Article  CAS  Google Scholar 

  23. H. Freundlich, Z. Phys. Chem., 57, 384 (1906).

    Google Scholar 

  24. F. Rozada, M. Otero, A. I. Garcia and A. Moran, Dyes Pigm., 72, 47 (2007).

    Article  Google Scholar 

  25. M. Jain, V.K. Garg and K. Kadrivelu, Bioresour. Technol., 102, 600 (2011).

    Article  CAS  Google Scholar 

  26. M. Amini, H. Younesi, N. Bahramifar, A. A. A. Lorestani, F. Ghorbani, A. Daneshi and M. Sharifzadeh, J. Hazard. Mater., 54, 694 (2008).

    Article  Google Scholar 

  27. T.W. Webi and R. K. Chakravort, AIChE J., 20, 228 (1974).

    Article  Google Scholar 

  28. S. Ghorai and K. K. Pant, Sep. Purif. Technol., 42, 265 (2005).

    Article  CAS  Google Scholar 

  29. Y. Vijaya, S.R. Popuri, A. S. Reddy and A. Krishnaiah, J. Appl. Polym. Sci., 120, 3443 (2011).

    Article  CAS  Google Scholar 

  30. Y. Vijaya and A. Krishnaiah, E-J. Chem., 6, 713 (2009).

    Article  CAS  Google Scholar 

  31. D. Thakre, S. Jagtap, N. Sakhare, N. Labhsetwar, S. Meshram and S. Rayalu, Chem. Eng. J., 158, 315 (2010).

    Article  CAS  Google Scholar 

  32. X. P. Liao and B. Shi, Environ. Sci. Technol., 39, 4628 (2005).

    Article  CAS  Google Scholar 

  33. A. Teutli-Sequeira, M. Solache-Ríos, V. Martínez-Miranda and I. Linares-Hernández, J. Colloid Interface Sci., 418, 254 (2014).

    Article  CAS  Google Scholar 

  34. S.K. Swain, T. Patnaik, P.C. Patnaik, U. Jha and R.K. Dey, Chem. Eng. J., 215-216, 763 (2013).

    Article  Google Scholar 

  35. Z. Zhang, Y. Tan and M. Zhong, Desalination, 276, 246 (2011).

    Article  CAS  Google Scholar 

  36. B. Zhao, Y. Zhang, X. Dou, X. Wu and M. Yang, Chem. Eng. J., 185-186, 211 (2012).

    Article  CAS  Google Scholar 

  37. K. Babaeivelni and A. P. Khodadoust, J. Colloid Interface Sci., 394, 419 (2013).

    Article  CAS  Google Scholar 

  38. P. Koilraj and S. Kannan, Chem. Eng. J., 234, 406 (2013).

    Article  CAS  Google Scholar 

  39. S.K. Swain, T. Patnaik, V.K. Singha, U. Jha, R.K. Patel and R.K. Dey, Chem. Eng. J., 171, 1218 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swapnila Roy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, S., Das, P. & Sengupta, S. Thermodynamics and kinetics study of defluoridation using Ca-SiO2-TiO2 as adsorbent: Column studies and statistical approach. Korean J. Chem. Eng. 34, 179–188 (2017). https://doi.org/10.1007/s11814-016-0217-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0217-0

Keywords

Navigation