Skip to main content

Advertisement

Log in

CO2 absorption characteristics of a piperazine derivative with primary, secondary, and tertiary amino groups

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Thermodynamic and kinetic data are important for designing a CO2 absorption process using aqueous amine solutions. A piperazine derivative, 1-(2-aminoethyl)piperazine (AEP), was blended with aqueous amine solutions due to its thermal degradation stability, high CO2 loading (mole of CO2-absorbed per mole of amine) and high solubility in water. In this study, the vapor liquid equilibrium (VLE), absorption rate, and species distribution of aqueous AEP solutions were studied to develop an optimum amine solution in a post-combustion capture process. The VLE and apparent absorption rate of the aqueous 30wt% AEP solution were measured using a batch-type reactor at 313.15, 333.15, and 353.15 K. The AEP exhibited approximately twice higher CO2 loading compared with monoethanolamine (MEA) at all temperatures. The apparent AEP absorption rate (k app =0.1 min−1) was similar to that of diethanolamine (DEA) at 333.15 K. Speciation of the CO2-absorbed AEP was analyzed using 13C NMR. Although AEP featured a primary amino group and secondary amino group, it did not form bicarbamate upon reaction with CO2 based on analysis results. AEP-1-carbamate was primarily formed by reactions between AEP and CO2 during the initial reaction. Bicarbonate species formed as the quantity of absorbed CO2 increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Albo, P. Luis and A. Irabin, Ind. Eng. Chem. Res., 49, 11045 (2010).

    Article  CAS  Google Scholar 

  2. G. Marland, T. A. Boden and R. J. Andres, Global, regional, and national CO2 emissions, Trends: A compendium of data on global change, Statistical Review of World Energy (2010).

    Google Scholar 

  3. R. Allam and O. Bolland, IPCC special report: Carbon dioxide capture and storage, IPCC Working Group III (2005).

    Google Scholar 

  4. R. Thiruvenkatachari, S. Su, H. An and X. X. Yu, Prog. Energy Combust. Sci., 35, 438 (2009).

    Article  CAS  Google Scholar 

  5. A. J. Applehy and F. R. Foulkes, Fuel Cell Handbook, Van Nostrand Reinhold, New York (1989).

    Google Scholar 

  6. C. Han, K. Graves, J. Neathery and K. Liu, Energy Environ. Res., 1, 67 (2011).

    Article  Google Scholar 

  7. Y. E. Kim, J. H. Choi, S. C. Nam and Y. I. Yoon, Ind. Eng. Chem. Res., 50, 9306 (2011).

    Article  CAS  Google Scholar 

  8. J. Davison, Energy, 32, 1163 (2007).

    Article  CAS  Google Scholar 

  9. F. Closmann, T. Nguyen and G. T. Rochelle, Energy Procedia., 1, 1351 (2009).

    Article  CAS  Google Scholar 

  10. D. Singh, E. Croiset, P. L. Douglas and M. A. Douglas, Energy Convers. Manage., 44, 3073 (2003).

    Article  CAS  Google Scholar 

  11. R. Davy, Energy Procedia, 1, 885 (2009).

    Article  CAS  Google Scholar 

  12. M. H. Li and K. P. Shen, Fluid Phase Equilib., 85, 129 (1993).

    Article  CAS  Google Scholar 

  13. M. D. Cheng, A. R. Caparanga, A. N. Soriano and M. H. Li, J. Chem. Thermodyn., 742, 342 (2010).

    Article  Google Scholar 

  14. F. Y. Jou, A. E. Mather and F. D. Otto, Can. J. Chem. Eng., 73, 140 (1995).

    Article  CAS  Google Scholar 

  15. A. Veawab, P. Tontiwachwuthikul and A. Chakma, Ind. Eng. Chem. Res., 38, 3917 (1999).

    Article  CAS  Google Scholar 

  16. A. Veawab, P. Toniwachwuthikul and S. D. Bhole, Ind. Eng. Chem. Res., 1, 36 (1997).

    Google Scholar 

  17. P. Singh, D. W. F. Brilman and M. J. Groeneveld, Energy Procedia, 1, 1257 (2009).

    Article  CAS  Google Scholar 

  18. Y. Du, L. Li, O. Namjoshi, A. K. Voice, N. a. Fine and G. T. Rochelle, Energy Procedia., 37, 1621 (2013).

    Article  CAS  Google Scholar 

  19. Y. Du and G. T. Rochelle, Energy Procedia, 63, 997 (2014).

    Article  CAS  Google Scholar 

  20. R. Zhang, E. P. Bonnin-Nartker, G. A. Farthing, L. Ji, M. G. Klidas, M. E. Nelson and L. M. Rimpf, Energy Procedia., 4, 1660 (2011).

    Article  CAS  Google Scholar 

  21. Y. Zhang, Ind. Eng. Chem. Res., 50, 163 (2011).

    Article  CAS  Google Scholar 

  22. P. Jackson, K. J. Fisher and M. I. Attalla, Am. Soc. Mass. Spectrom., 22, 1420 (2011).

    Article  CAS  Google Scholar 

  23. M. S. Islam, R. Yusoff and B. S. Ali, Engineering e-Transaction., 2, 97 (2010).

    Google Scholar 

  24. M. Caplow, J. Am. Chem. Soc., 90, 6795 (1968).

    Article  CAS  Google Scholar 

  25. P. V. Danckwerts, Chem. Eng. Sci., 34, 443 (1979).

    Article  CAS  Google Scholar 

  26. H.-B. Xie, Y. Zhou, Y. Zhang and J. K. Johnson, J. Phys. Chem. A., 114, 11844 (2010).

    Article  CAS  Google Scholar 

  27. F. Barzagli, F. Mani and M. Peruzzini, Energy Environ. Sci., 2, 322 (2009).

    Article  CAS  Google Scholar 

  28. A. K. Chakraborty, K. B. Bischoff, G. Astarita and J. R. Damewood, J. Am. Chem. Soc., 110, 6947 (1988).

    Article  CAS  Google Scholar 

  29. D. Prakash, E. Vaidya and Y. Kenig, Chem. Eng. Technol., 30, 1467 (2007).

    Article  Google Scholar 

  30. F. Barzagli, F. Mani and M. Peruzzini, Inter. J. Greenhouse Gas Control, 5, 448 (2011).

    Article  CAS  Google Scholar 

  31. C. Perinu, B. Arstad and K.-J. Jens, Int. J. Greenhouse Gas Control, 20, 230 (2014).

    Article  CAS  Google Scholar 

  32. J. H. Choi, S. G. Oh, Y. E. Kim, Y. I. Yoon and S. C. Nam, Environ. Eng. Sci., 29, 328 (2012).

    Article  CAS  Google Scholar 

  33. I. H. Um, M. J. Kim, J. S. Min and D. S. Kwon, Bull. Korean Chem. Soc., 15, 523 (1997).

    Google Scholar 

  34. J. H. Choi, S. G. Oh, Y. I. Yoon, S. K. Jeong, K. R. Jang and S. C. Nam, J. Ind. Eng. Chem., 18, 568 (2012).

    Article  CAS  Google Scholar 

  35. A. F. Ciftja, A. H. Hartono and H. F. Svendsen, Int. J. Greenhouse Gas Control, 16, 224 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeo Il Yoon.

Additional information

This article is dedicated to Prof. Sung Hyun Kim on the occasion of his retirement from Korea University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, J.H., Kim, Y.E., Nam, S.C. et al. CO2 absorption characteristics of a piperazine derivative with primary, secondary, and tertiary amino groups. Korean J. Chem. Eng. 33, 3222–3230 (2016). https://doi.org/10.1007/s11814-016-0180-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0180-9

Keywords

Navigation