Skip to main content
Log in

Volumetric properties of supercritical carbon dioxide from volume-translated and modified Peng-Robinson equations of state

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Following three well-established approaches, different modifications have been proposed that significantly improve the Peng-Robinson EOS’s predictions of the volumetric properties of carbon dioxide in the supercritical region. By making use of 5301 experimental PVT data points of supercritical carbon dioxide (SC-CO2), three models have been developed based on the volume-translation concept, modification of the alpha function of the attractive term of the Peng-Robinson EOS and the addition of a third translation parameter to the EOS. The experimental data considered encompass a wide temperature and pressure range of 304.35-1,273.15 K and 7.38-800.00MPa, respectively. According to the results from several graphical and statistical analyses, the proposed models can reliably be employed for prediction and representation of the volumetric properties of SC-CO2 with AARDs below 1.3%. Comparisons have also been made with the modified Redlich-Kwong EOS as well as the standard reference multiparameter EOS developed by Span and Wagner, demonstrating the comparable accuracy of the proposed models, while offering notably simpler mathematical formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. M. Schneider, C. B. Kautz and D. Tuma, in Supercritical Fluids, Springer Netherlands, Dordrecht, 31 (2000), DOI:10.1007/978-94-011-3929-8_2.

    Book  Google Scholar 

  2. G. Brunner, Annu. Rev. Chem. Biomol. Eng., 1, 321 (2010), DOI:10.1146/annurev-chembioeng-073009-101311.

    Article  CAS  Google Scholar 

  3. M. M. R. de Melo, A. J. D. Silvestre and C. M. Silva, J. Supercrit. Fluids, 92, 115 (2014), DOI:10.1016/j. supflu. 2014.04.007.

    Article  CAS  Google Scholar 

  4. T. Fornari, G. Vicente, E. Vázquez, M. R. García-Risco and G. Reglero, J. Chromatogr. A, 1250, 34 (2012), DOI:10.1016/j.chroma.2012.04.051.

    Article  CAS  Google Scholar 

  5. L. T. Taylor, Anal. Chem., 82, 4925 (2010), DOI:10.1021/ac101194x.

    Article  CAS  Google Scholar 

  6. G. Brunner, J. Supercrit. Fluids, 47, 373 (2009), DOI:10.1016/j.sup-flu.2008.09.002.

    Article  CAS  Google Scholar 

  7. G. Brunner, J. Supercrit. Fluids, 47, 382 (2009), DOI:10.1016/j.supflu.2008.09.001.

    Article  CAS  Google Scholar 

  8. P. G. Debenedetti, J. W. Tom, X. Kwauk and S. D. Yeo, Fluid Phase Equilib., 82, 311 (1993), DOI:10.1016/0378-3812(93)87155-T.

    Article  CAS  Google Scholar 

  9. M. Türk, J. Supercrit. Fluids, 47, 537 (2009), DOI:10.1016/j.supflu.2008.09.008.

    Article  CAS  Google Scholar 

  10. N. L. Rozzi and R. K. Singh, Compr. Rev. Food Sci. Food Saf., 1, 33 (2002), DOI:10.1111/j.1541-43372002.tb00005.x.

    Article  CAS  Google Scholar 

  11. B. Sekhon, Int. J. PharmTech Res., 2, 810 (2010).

    CAS  Google Scholar 

  12. Q. Lang and C. M. Wai, Talanta, 53, 771 (2001), DOI:10.1016/S0039-9140(00)00557-9.

    Article  CAS  Google Scholar 

  13. A. Ríos, M. Zougagh and F. de Andrés, Bioanalysis, 2, 9 (2010), DOI:10.4155/bio.09.167.

    Article  Google Scholar 

  14. S. Keskin, D. Kayrak-Talay, U. Akman and Ö. Hortaçsu, J. Supercrit. Fluids, 43, 150 (2007), DOI:10.1016/j.supflu.2007.05.013.

    Article  CAS  Google Scholar 

  15. E. Reverchon and I. De Marco, J. Supercrit. Fluids, 38, 146 (2006), DOI:10.1016/j.supflu.2006.03.020.

    Article  CAS  Google Scholar 

  16. S. C. Tucker and G. Goodyear, in Supercritical Fluids, Springer Netherlands, Dordrecht, 395 (2000), DOI:10.1007/978-94-011-3929-8_16.

    Book  Google Scholar 

  17. M. J. Antal, A. Brittain, C. DeAlmeida, S. Ramayya and J. C. Roy, in Supercritical Fluids, ACS Symposium Series, 329, 77 (1987), DOI:10.1021/bk-1987-0329. ch007.

  18. M. T. Klein, Y. G. Mentha and L. A. Torry, Ind. Eng. Chem. Res., 31, 182 (1992), DOI:10.1021/ie00001a026.

    Article  CAS  Google Scholar 

  19. E. Reverchon, J. Supercrit. Fluids, 10, 1 (1997), DOI:10.1016/S0896-8446(97)00014-4.

    Article  CAS  Google Scholar 

  20. R. M. Smith, J. Chromatogr. A, 856, 83 (1999), DOI:10.1016/S0021-9673(99)00617-2.

    Article  CAS  Google Scholar 

  21. E. Heidaryan and A. Jarrahian, J. Supercrit. Fluids, 81, 92 (2013), DOI:10.1016/j.supflu2013.05.009.

    Article  CAS  Google Scholar 

  22. S. I. Sandler, An Introduction to Applied Statistical Thermodynamics, Wiley, 1st Ed. (2010).

    Google Scholar 

  23. G. Wilczek-Vera and J. H. Vera, AIChE J., 61, 2824 (2015), DOI:10.1002/aic.14741.

    Article  CAS  Google Scholar 

  24. U. K. Deiters and R. Macías-Salinas, Ind. Eng. Chem. Res., 53, 2529 (2014), DOI:10.1021/ie4038664.

    Article  CAS  Google Scholar 

  25. R. Smith, H. Inomata and C. Peters, in Supercritical Fluid Science and Technology, 333 (2013), DOI:10.1016/B978-0-444-52215-3.00006-4.

    Google Scholar 

  26. M. Nazarzadeh and M. Moshfeghian, Fluid Phase Equilib., 337, 214 (2013), DOI:10.1016/j.fluid.2012.10.003.

    Article  CAS  Google Scholar 

  27. A. M. Abudour, S. A. Mohammad, R. L. Robinson and K. A. M. Gasem, Fluid Phase Equilib., 349, 37 (2013), DOI:10.1016/j.fluid.2013.04.002.

    Article  CAS  Google Scholar 

  28. D. Y. Peng and D. B. Robinson, Ind. Eng. Chem. Fundam., 15, 59 (1976), DOI:10.1021/i160057a011.

    Article  CAS  Google Scholar 

  29. D. B. Robinson and D. Y. Peng, The characterization of the heptanes and heavier fractions for the GPA Peng-Robinson programs (Research Report RR-28), Gas Processors Association (1978).

    Google Scholar 

  30. J. D. van der Waals, Leiden University, The Netherlands (1873).

    Google Scholar 

  31. Google Scholar, (2016). https://scholar.google.com/scholar?hl=en&as_sdt=2005&sciodt=0,5&cites=4508945351855465254.

  32. J. O. Valderrama, Ind. Eng. Chem. Res., 42, 1603 (2003), DOI:10.1021/ie020447b.

    Article  CAS  Google Scholar 

  33. J. J. Martin, Ind. Eng. Chem. Fundam., 18, 81 (1979), DOI:10.1021/ i160070a001.

    Article  CAS  Google Scholar 

  34. A. Péneloux, E. Rauzy and R. Fréze, Fluid Phase Equilib., 8, 7 (1982), DOI:10.1016/0378-3812(82)80002-2.

    Article  Google Scholar 

  35. H. B. de Sant’Ana, P. Ungerer and J. C. de Hemptinne, Fluid Phase Equilib., 154, 193 (1999), DOI:10.1016/S0378-3812(98)00441-5.

    Article  Google Scholar 

  36. H. Baled, R. M. Enick, Y. Wu, M. A. McHugh, W. Burgess, D. Tapriyal and B. D. Morreale, Fluid Phase Equilib., 317, 65 (2012), DOI:10.1016/j.fluid.2011.12.027.

    Article  CAS  Google Scholar 

  37. A. M. Abudour, S. A. Mohammad, R. L. Robinson and K. A. M. Gasem, Fluid Phase Equilib., 335, 74 (2012), DOI:10.1016/j.fluid.2012.08.013.

    Article  CAS  Google Scholar 

  38. A. Haghtalab, P. Mahmoodi and S. H. Mazloumi, Can. J. Chem. Eng., 89, 1376 (2011), DOI:10.1002/cjce.20519.

    Article  CAS  Google Scholar 

  39. R. Privat, M. Visconte, A. Zazoua-Khames, J.-N. Jaubert and R. Gani, Chem. Eng. Sci., 126, 584 (2015), DOI:10.1016/j.ces.2014.12.040.

    Article  CAS  Google Scholar 

  40. N. L. Cramer, in Proceedings of the 1st International Conference on Genetic Algorithms, Ed. J. J. Grefenstette, L. Erlbaum Associates Inc., Carnegie-Mellon University, Pittsburgh, PA, USA, 183 (1985).

  41. J. R. Koza, Genetic programming: on the programming of computers by means of natural selection, MIT Press, Cambridge, MA, USA (1992).

    Google Scholar 

  42. M. Schmidt and H. Lipson, Science, 324, 81 (2009), DOI:10.1126/science.1165893.

    Article  CAS  Google Scholar 

  43. A. H. Gandomi, A. H. Alavi and C. Ryan, Handbook of Genetic Programming Applications, Springer International Publishing, Cham (2015), DOI:10.1007/978-3-319-20883-1.

    Book  Google Scholar 

  44. W. B. Langdon and S. M. Gustafson, Genet. Program. Evolvable Mach., 11, 321 (2010), DOI:10.1007/s10710-010-9111-4.

    Article  Google Scholar 

  45. M. Schmidt and H. Lipson, Eureqa, Nutonian Inc., http://www.nutonian.com (2016).

    Google Scholar 

  46. R. Span, Multiparameter Equations of State, Springer Berlin Heidelberg, Berlin, Heidelberg (2000), DOI:10.1007/978-3-662-04092-8.

    Book  Google Scholar 

  47. R. T. Jacobsen, S. G. Penoncello, E. W. Lemmon and R. Span, in Equations of State for Fluids and Fluid Mixtures, Eds. J. V. Sengers, R. F. Kayser, C. J. Peters and H. J. White, Elsevier, Amsterdam, 849 (2000), DOI:10.1016/S1874-5644(00)80008-9.

  48. R. Span, W. Wagner, E. W. Lemmon and R. T. Jacobsen, Fluid Phase Equilib., 183-184, 1 (2001), DOI:10.1016/S0378-3812(01)00416-2.

    Article  CAS  Google Scholar 

  49. R. Span and W. Wagner, J. Phys. Chem. Ref. Data, 25, 1509 (1996), DOI:10.1063/1. 555991.

    Article  CAS  Google Scholar 

  50. A. Zolghadr, M. Escrochi and S. Ayatollahi, J. Chem. Eng. Data, 58, 1168 (2013), DOI:10.1021/je301283e.

    Article  CAS  Google Scholar 

  51. D. Kodama, M. Kato and T. Kaneko, Fluid Phase Equilib., 357, 57 (2013), DOI:10.1016/j.fluid.2013.02.003.

    Article  CAS  Google Scholar 

  52. M. Kato, D. Kodama, M. Kokubo, K. Ohashi and S. Hashimoto, J. Chem. Eng. Data, 56, 421 (2011), DOI:10.1021/je100788g.

    Article  CAS  Google Scholar 

  53. L. Gil, J. F. Martínez-López, M. Artal, S. T. Blanco, J. M. Embid, J. Fernández, S. Otín and I. Velasco, J. Phys. Chem. B, 114, 5447 (2010), DOI:10.1021/jp100184r.

    Article  CAS  Google Scholar 

  54. D. Kodama, M. Kato, S. Hashimoto and T. Kaneko, J. Supercrit. Fluids, 55, 696 (2010), DOI:10.1016/j.supflu.2010.09.019.

    Article  CAS  Google Scholar 

  55. I. D. Mantilla, D. E. Cristancho, S. Ejaz, K. R. Hall, M. Atilhan and G. A. Iglesias-Silva, J. Chem. Eng. Data, 55, 4611 (2010), DOI:10.1021/je1001158.

    Article  CAS  Google Scholar 

  56. D. Kodama, K. Sugiyama, T. Ono and M. Kato, J. Supercrit. Fluids, 47, 128 (2008), DOI:10.1016/j.supflu.2008.07.021.

    Article  CAS  Google Scholar 

  57. A. S. Pensado, A. A. H. Pádua, M. J. P. Comuñas and J. Fernández, J. Supercrit. Fluids, 44, 172 (2008), DOI:10.1016/j.supflu.2007.10.004.

    Article  CAS  Google Scholar 

  58. O. Suárez-Iglesias, I. Medina, C. Pizarro and J. L. Bueno, Ind. Eng. Chem. Res., 46, 3810 (2007), DOI:10.1021/ie061591q.

    Article  CAS  Google Scholar 

  59. K. Liu and E. Kiran, Ind. Eng. Chem. Res., 46, 5453 (2007), DOI:10.1021/ie070274w.

    Article  CAS  Google Scholar 

  60. M. Kato, K. Sugiyama, M. Sato and D. Kodama, Fluid Phase Equilib., 257, 207 (2007), DOI:10.1016/j.fluid.2007.01.033.

    Article  CAS  Google Scholar 

  61. D. Pecar and V. Dolecek, J. Chem. Eng. Data, 52, 2442 (2007), DOI:10.1021/je700373r.

    Article  CAS  Google Scholar 

  62. D. Pecar and V. Dolecek, J. Supercrit. Fluids, 40, 200 (2007), DOI:10.1016/j.supflu.2006.07.007.

    Article  CAS  Google Scholar 

  63. M. Kato, D. Kodama, M. Sato and K. Sugiyama, J. Chem. Eng. Data, 51, 1031 (2006), DOI:10.1021/je050514j.

    Article  CAS  Google Scholar 

  64. M. Škerget, L. Cretnik, Ž. Knez and M. Škrinjar, Fluid Phase Equilib., 231, 11 (2005), DOI:10.1016/j.fluid.2004.12.012.

    Article  CAS  Google Scholar 

  65. A. Ferri, M. Banchero, L. Manna and S. Sicardi, J. Supercrit. Fluids, 30, 41 (2004), DOI:10.1016/S0896-8446(03)00114-1.

    Article  CAS  Google Scholar 

  66. R. Eggers and P. Jaeger, in Supercritical Fluids as Solvents and Reaction Media, Elsevier, 363 (2004), DOI:10.1016/B978-044451574-2/50015-8.

    Book  Google Scholar 

  67. A. Garmroodi, J. Hassan and Y. Yamini, J. Chem. Eng. Data, 49, 709 (2004), DOI:10.1021/je020218w.

    Article  CAS  Google Scholar 

  68. X. Zhang, X. Zhang, B. Han, L. Shi, H. Li and G. Yang, J. Supercrit. Fluids, 24, 193 (2002), DOI:10.1016/S0896-8446(02)00038-4.

    Article  CAS  Google Scholar 

  69. J. Klimeck, R. Kleinrahm and W. Wagner, J. Chem. Thermodyn., 33, 251 (2001), DOI:10.1006/jcht.2000.0711.

    Article  CAS  Google Scholar 

  70. E. C. Ihmels and J. Gmehling, Ind. Eng. Chem. Res., 40, 4470 (2001), DOI:10.1021/ie001135g.

    Article  CAS  Google Scholar 

  71. L. Shi, X. Zhang, X. Zhang, G. Yang, B. Han and H. Yan, Acta Physico-Chimica Sin., 16, 31 (2000), DOI:10.3866/PKU. WHXB20000107.

    CAS  Google Scholar 

  72. D. Kodama, T. Nakajima, H. Tanaka and M. Kato, Netsu Bussei, 12, 186 (1998), DOI:10.2963/jjtp.12.186.

    Article  CAS  Google Scholar 

  73. P. S. van der Gulik, Phys. A Stat. Mech. its Appl., 238, 81 (1997), DOI:10.1016/S0378-4371(96)00466-9.

    Article  Google Scholar 

  74. W.-W. R. Lau, C.-A. Hwang, J. C. Holste, K. R. Hall, B. E. Gammon and K. N. Marsh, J. Chem. Eng. Data, 42, 900 (1997), DOI:10.1021/je9700434.

    Article  CAS  Google Scholar 

  75. Z. Zhang and J. W. King, J. Chromatogr. Sci., 35, 483 (1997), DOI:10.1093/chromsci/35.10.483.

    Article  CAS  Google Scholar 

  76. R. Yaginuma, T. Nakajima, H. Tanaka and M. Kato, J. Chem. Eng. Data, 42, 814 (1997), DOI:10.1021/je9700028.

    Article  CAS  Google Scholar 

  77. P. Nowak, T. Tielkes, R. Kleinrahm and W. Wagner, J. Chem. Thermodyn., 29, 885 (1997), DOI:10.1006/jcht.1997.0208.

    Article  CAS  Google Scholar 

  78. A. Docter, Ruhr-Universität Bochum (1997).

    Google Scholar 

  79. J. C. Seitz and J. G. Blencoe, J. Chem. Thermodyn., 28, 1207 (1996), DOI:10.1006/jcht.1996107.

    Article  CAS  Google Scholar 

  80. E. Ö. Özer, S. P. Iin, U. Akman and Ö. Hortaçsu, Can. J. Chem. Eng., 74, 920 (1996), DOI:10.1002/cjce.5450740615.

    Article  Google Scholar 

  81. A. Akgerman, C. Erkey and M. Orejuela, Ind. Eng. Chem. Res., 35, 911 (1996), DOI:10.1021/ie950422v.

    Article  CAS  Google Scholar 

  82. E. Kiran, H. Pöhler and Y. Xiong, J. Chem. Eng. Data, 41, 158 (1996), DOI:10.1021/je9501503.

    Article  CAS  Google Scholar 

  83. D. Liu, M. Kwauk and H. Li, Chem. Eng. Sci., 51, 4045 (1996), DOI:10.1016/0009-2509(96)00247-3.

    Article  CAS  Google Scholar 

  84. B. C. Roy, M. Goto and T. Hirose, Ind. Eng. Chem. Res., 35, 607 (1996), DOI:10.1021/ie950357p.

    Article  CAS  Google Scholar 

  85. D. Kodama, N. Kubota, Y. Yamaki, H. Tanaka and M. Kato, Netsu Bussei, 10, 16 (1996), DOI:10.2963/jjtp.10.16.

    Article  CAS  Google Scholar 

  86. H. Pöhler and E. Kiran, J. Chem. Eng. Data, 41, 482 (1996), DOI:10.1021/je950273n.

    Article  Google Scholar 

  87. Z. Gokmenoglu, Y. Xiong and E. Kiran, J. Chem. Eng. Data, 41, 354 (1996), DOI:10.1021/je950260+.

    Article  CAS  Google Scholar 

  88. J. C. Seitz, J. G. Blencoe and R. J. Bodnar, J. Chem. Thermodyn., 28, 521 (1996), DOI:10.1006/jcht.1996.0049.

    Article  CAS  Google Scholar 

  89. Z. Knez, M. Skerget, P. Sencar-Bozic and A. Rizner, J. Chem. Eng. Data, 40, 216 (1995), DOI:10.1021/je00017a045.

    Article  CAS  Google Scholar 

  90. Z. S. Gonenc, U. Akman and A. K. Sunol, J. Chem. Eng. Data, 40, 799 (1995), DOI:10.1021/je00020a013.

    Article  CAS  Google Scholar 

  91. H. Duarte-Garza, C. A. Hwang, M. W. Kidd, W. W. R. Lau, D. Moeller, P. T. Eubank, J. C. Holste, K. R. Hall, B. E. Gammon and K. N. Marsh, GPA Res. Rep., 1 (1995).

    Google Scholar 

  92. A. Fenghour, W. A. Wakeham and J. T. R. Watson, J. Chem. Thermodyn., 27, 219 (1995), DOI:10.1006/jcht.1995.0019.

    Article  CAS  Google Scholar 

  93. D. J. Dixon, K. P. Johnston and R. A. Bodmeier, AIChE J., 39, 127 (1993), DOI:10.1002/aic. 690390113.

    Article  CAS  Google Scholar 

  94. J. M. H. Levelt Sengers, U. K. Deiters, U. Klask, P. Swidersky and G. M. Schneider, Int. J. Thermophys., 14, 893 (1993), DOI:10.1007/ BF00502114.

    Article  Google Scholar 

  95. K. Brachthäuser, R. Kleinrahm, H. W. Lösch and W. Wagner, Fortschr.-Berichte VDI, R. 8, 371, 1 (1993).

    Google Scholar 

  96. T. Wells, N. R. Foster and R. P. Chaplin, Ind. Eng. Chem. Res., 31, 927 (1992), DOI:10.1021/ie00003a039.

    Article  CAS  Google Scholar 

  97. J. J. Langenfeld, S. B. Hawthorne, D. J. Miller and J. Tehrani, Anal. Chem., 64, 2263 (1992), DOI:10.1021/ac00043a014.

    Article  CAS  Google Scholar 

  98. R. Gilgen, R. Kleinrahm and W. Wagner, J. Chem. Thermodyn., 24, 1243 (1992), DOI:10.1016/S0021-9614(05)80264-2.

    Article  CAS  Google Scholar 

  99. N. F. Giles, J. L. Oscarson, R. L. Rowley, W. K. Tolley and R. M. Izatt, Fluid Phase Equilib., 73, 267 (1992), DOI:10.1016/0378- 3812(92)80014-Z.

    Article  CAS  Google Scholar 

  100. W. K. Tolley, R. M. Izatt and J. L. Oscarson, Thermochim. Acta, 181, 127 (1991), DOI:10.1016/0040-6031(91)80418-I.

    Article  CAS  Google Scholar 

  101. W. Duschek, R. Kleinrahm and W. Wagner, J. Chem. Thermodyn., 22, 827 (1990), DOI:10.1016/0021-9614(90)90172-M.

    Article  CAS  Google Scholar 

  102. J. Ely, W. Haynes and B. Bain, J. Chem. Thermodyn., 21, 879 (1989), DOI:10.1016/0021-9614(89)90036-0.

    Article  CAS  Google Scholar 

  103. C. S. Tan and D. C. Liou, Ind. Eng. Chem. Res., 27, 988 (1988), DOI:10.1021/ie00078a017.

    Article  CAS  Google Scholar 

  104. J. W. Magee and J. F. Ely, Int. J. Thermophys., 9, 547 (1988), DOI:10.1007/BF00503153.

    Article  CAS  Google Scholar 

  105. A. I. Johns, S. Rashid, J. T. R. Watson and A. A. Clifford, J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases, 82, 2235 (1986), DOI:10.1039/f19868202235.

    CAS  Google Scholar 

  106. J. C. Holste, K. R. Hall, P. T. Eubank, G. Esper, M. Q. Watson, W. JWarowny, D. M. Bailey, J. G. Young and M. T. Bellomy, J. Chem. Thermodyn., 19, 1233 (1987), DOI:10.1016/0021-9614(87)90001-2.

    Article  CAS  Google Scholar 

  107. A. C. Scott, A. I. Johns, J. T. R. Watson and A. A. Clifford, J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases, 79, 733 (1983), DOI:10.1039/f19837900733.

    CAS  Google Scholar 

  108. N. V. Kuskova, V. G. Martynets, E. V. Matizen and A. G. Sartakov, Zhurnal Fiz. Khimii, 57, 2971 (1983).

    CAS  Google Scholar 

  109. H. Iwasaki, J. Chem. Phys., 74, 1930 (1981), DOI:10.1063/1. 441286.

    Article  CAS  Google Scholar 

  110. H. I. Haepp, Wärme-und Stoffübertragung, 9, 281 (1976).

    Article  CAS  Google Scholar 

  111. V. M. Shmonov and K. I. Shmulovich, Dokl. Akad. Nauk SSSR, 217, 935 (1974).

    CAS  Google Scholar 

  112. D. S. Tsiklis, L. R. Linshits and I. B. Rodkina, Zhurnal Fiz. Khimii, 48, 1544 (1974).

    CAS  Google Scholar 

  113. D. S. Tsiklis, L. R. Linshits and I. B. Rodkina, Zhurnal Fiz. Khimii, 48, 1541 (1974).

    CAS  Google Scholar 

  114. B. le Neindre, R. Tufeu, P. Bury and J. V. Sengers, Berichte der Bunsengesellschaft für Phys. Chemie, 77, 262 (1973), DOI:10.1002/bbpc.19730770410.

    Google Scholar 

  115. G. J. Besserer and D. B. Robinson, J. Chem. Eng. Data, 18, 137 (1973), DOI:10.1021/je60057a033.

    Article  CAS  Google Scholar 

  116. D. S. Tsiklis, L. R. Linshits and S. S. Tsimmerman, Teplofiz. Svoistva Veshchestv Mater., 130 (1971).

    Google Scholar 

  117. A. A. Vasserman, E. A. Golovskii and V. A. Tsymarnyi, Depos. Doc. VINITI, 1 (1970).

  118. V. A. Kirillin, S. A. Ulybin and E. P. Zherdev, Teplofiz. Svoistva Zhidk. Mater. Vses. Teplofiz. Konf., 136 (1970).

  119. V. A. Kirillin, S. A. Ulybin and E. P. Zherdev, Teplofiz. Svoistva Veshchestv Mater., 206 (1970).

  120. V. A. Kirillin, S. A. Ulybin and E. P. Yherdev, Teploenergetika, 16, 94 (1969).

    CAS  Google Scholar 

  121. E. A. Golovskii and V. A. Tsymarnyi, Teploenergetika, 67 (1969).

  122. V. A. Kirillin, S. A. Ulybin and E. P. Zherdev, Teploenergetika, 16, 92 (1969).

    CAS  Google Scholar 

  123. M. P. Vukalovich, V. P. Kobelev and N. I. Timoshenko, Teploenergetika, 81 (1968).

  124. P. S. Ku and B. F. Dodge, J. Chem. Eng. Data, 12, 158 (1967), DOI:10.1021/je60033a001.

    Article  CAS  Google Scholar 

  125. A. Sass, B. F. Dodge and R. H. Bretton, J. Chem. Eng. Data, 12, 168 (1967), DOI:10.1021/je60033a003.

    Article  CAS  Google Scholar 

  126. J. Juza, V. Kmonícek and O. Šifner, Physica, 31, 1735 (1965), DOI:10.1016/0031-8914(65)90093-5.

    Article  CAS  Google Scholar 

  127. J. Kestin, J. H. Whitelaw and T. F. Zien, Physica, 30, 161 (1964), DOI:10.1016/0031-8914(64)90211-3.

    Article  CAS  Google Scholar 

  128. M. P. Vukalovich, V. V. Altunin and N. I. Timoshenko, Teploenergetika, 85 (1963).

  129. L. A. Guildner, J. Res. Natl. Bur. Stand. Sect. A, 66, 333 (1962).

    Article  Google Scholar 

  130. M. P. Vukalovich, V. V. Altunin and N. I. Timoshenko, Teploenergetika, 56 (1962).

  131. M. P. Vukalovich and V. V. Altunin, Teploenergetika, 6, 58 (1959).

    CAS  Google Scholar 

  132. G. C. Kennedy, Am. J. Sci., 252, 225 (1954), DOI:10.2475/ajs.252.4.225.

    Article  CAS  Google Scholar 

  133. H. H. Reamer, R. H. Olds, B. H. Sage and W. N. Lacey, Ind. Eng. Chem., 36, 88 (1944), DOI:10.1021/ie50409a019.

    Article  CAS  Google Scholar 

  134. A. Michels, C. Michels and H. Wouters, Proc. R. Soc. London. Ser. A, 153, 214 (1935).

    Article  CAS  Google Scholar 

  135. NIST Standard Reference Database 103b (NIST TDE), http://trc.nist. gov/tde.html (2015).

  136. O. Redlich and J. N. S. Kwong, Chem. Rev., 44, 233 (1949), DOI:10.1021/cr60137a013.

    Article  CAS  Google Scholar 

  137. G. Soave, Chem. Eng. Sci., 27, 1197 (1972), DOI:10.1016/0009-2509(72)80096-4.

    Article  CAS  Google Scholar 

  138. S. Zendehboudi, A. R. Rajabzadeh, A. Bahadori, I. Chatzis, M. B. Dusseault, A. Elkamel, A. Lohi and M. Fowler, Ind. Eng. Chem. Res., 53, 1645 (2014), DOI:10.1021/ie303106z.

    Article  CAS  Google Scholar 

  139. S. Zendehboudi, A. Shafiei, A. Bahadori, L. A. James, A. Elkamel and A. Lohi, Chem. Eng. Res. Des., 92, 857 (2014), DOI:10.1016/j.cherd.2013.08.001

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aliakbar Roosta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hekayati, J., Roosta, A. & Javanmardi, J. Volumetric properties of supercritical carbon dioxide from volume-translated and modified Peng-Robinson equations of state. Korean J. Chem. Eng. 33, 3231–3244 (2016). https://doi.org/10.1007/s11814-016-0176-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0176-5

Keywords

Navigation