Skip to main content
Log in

Determination of reference enthalpies and thermal expansivity using molecular dynamic simulations in the distortion model of gas hydrates

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This work presents the determination of both reference chemical potential and temperature-dependent enthalpy changes of gas hydrates using molecular dynamics simulations. We introduced a method incorporating molecular dynamic (MD) simulations to the Lee-Holder distortion model for calculating the reference properties of single component structure II gas hydrates. The guest molecules affect the interaction between adjacent water molecules distorting the hydrate lattice, which requires diverse values of reference properties for different gas hydrates. We performed the simulation to validate the experimental data determining the reference chemical potential as well as the thermal expansivity of unit cell structure for structure II type gas hydrates. All simulations were performed using TIP4P water molecules at the reference temperature and pressure conditions. As an attempt to apply MD simulation to calculate the reference state of gas hydrate, we demonstrate lattice distortion of structure I and II gas hydrates. The reference chemical potential was generally found to increase with the size of the guest molecule. The temperature effect on the unit cell size, which will be used to calculate the enthalpy change of gas hydrate due to temperature, has been observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Martin and C. J. Peters, J. Phys. Chem. C, 113(1), 422 (2009).

    Article  CAS  Google Scholar 

  2. T. Miyoshi, R. Ohmura and K. Yasuoka, J. Phys. Chem. C, 111(9), 3799 (2007).

    Article  CAS  Google Scholar 

  3. W. R. Parrish and J. M. Prausnitz, Ind. Eng. Chem. Process Design Dev., 11(1), 26 (1972).

    Article  CAS  Google Scholar 

  4. G. D. Holder, S. P. Zetts and N. Pradhan, Rev. Chem. Eng., 5(1-4), 1 (1988).

    Article  CAS  Google Scholar 

  5. S. Alavi, S. Takeya, R. Ohmur, T. K. Woo and J. A. Ripmeester, J. Chem. Phys., 153, 074505 (2010).

    Article  Google Scholar 

  6. J. H. van der Waals and J. C. Platteeuw, Adv. Chem. Phys., 2, 1 (1959).

    Google Scholar 

  7. S.-Y. Lee and G. D. Holder, AIChE J., 48(1), 161 (2002).

  8. S. Zele, S.-Y. Lee and G. D. Holder, J. Phys. Chem. B, 103(46), 10250 (1999).

    Article  CAS  Google Scholar 

  9. S.-Y. Lee and G. D. Holder, Annals of the New York Academy of Sciences, 912, 614 (2000).

    Article  CAS  Google Scholar 

  10. K. Jatkar, J. W. Lee and S. Lee, J. Thermodyn., 2010, 342792 (2010).

    Article  Google Scholar 

  11. E. D. Sloan and C. A. Koh, Clathrate Hydrates of Natural Gases, CRC Press, Boca Raton, FL, USA, 3rd Ed. (2008).

    Google Scholar 

  12. J. W. Lee, P. Yedlapalli and S. Lee, J. Phys. Chem. B, 110(5), 2332 (2006).

    Article  CAS  Google Scholar 

  13. E. J. Maggin, AIChE J., 55(6), 1304 (2009).

    Article  Google Scholar 

  14. K. Refson, Computer Physics Communications, 126(3), 310 (2000).

    Article  CAS  Google Scholar 

  15. K. Refson, “Moldy User’s Manual” (2009).

    Google Scholar 

  16. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford University Press, Oxford, UK (1987).

    Google Scholar 

  17. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey and M. L. Klein, J. Chem. Phys., 79(2), 926 (1983).

    Article  CAS  Google Scholar 

  18. S.-Y. Lee, P. Yedlapalli and J. W. Lee, J. Phys. Chem. B., 110, 2332 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangyong Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potdar, S., Lee, J.W. & Lee, S. Determination of reference enthalpies and thermal expansivity using molecular dynamic simulations in the distortion model of gas hydrates. Korean J. Chem. Eng. 33, 3216–3221 (2016). https://doi.org/10.1007/s11814-016-0172-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0172-9

Keywords

Navigation