Skip to main content

Advertisement

Log in

Thermo-catalytic decomposition of waste lubricating oil over carbon catalyst

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The thermo-catalytic decomposition of waste lubricating oil over a carbon catalyst was investigated in an I.D. of 14.5mm and length of 640mm quartz tube reactor. The carbon catalysts were activated carbon and rubber grade carbon blacks. The decomposition products of waste lubricating oil were hydrogen, methane, and ethylene in a gas phase, carbon in a solid phase and naphthalene in a liquid phase occurring within the temperature ranges of 700 °C-850 °C. The thermo-catalytic decomposition showed higher hydrogen yield and lower methane yield than that of a non-catalytic decomposition. The carbon black catalyst showed higher hydrogen yield than the activated carbon catalyst and maintained constant catalytic activity for hydrogen production, while activated carbon catalyst showed a deactivation in catalytic activity for hydrogen production. As the operating temperature increased from 700 °C to 800 °C, the hydrogen yield increased and was particularly higher with carbon black catalyst than activated carbon. As a result, carbon black catalyst was found to be an effective catalyst for the decomposition of waste lubricating oil into valuable chemicals such as hydrogen and methane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Kogan, Int. J. Hydrogen Energy, 23(2), 89 (1998).

    Article  CAS  Google Scholar 

  2. D.L. Cho, H.N. Kim, M. Lee and E. Cho, Korean J. Chem. Eng., 32(12), 2519 (2015).

    Article  CAS  Google Scholar 

  3. J. H. Kwak, G.Y. Han, J.W. Bae and K. J. Yoon, Korean J. Chem. Eng., 31(6), 961 (2014).

    Article  CAS  Google Scholar 

  4. N. Shah, D. Panjala and G. P. Huffman, Energy Fuels, 15(6), 1528 (2001).

    Article  CAS  Google Scholar 

  5. E.K. Lee, S.Y. Lee, G.Y. Han, B.K. Lee, T. J. Lee, J.H. Jun and K. J. Yoon, Carbon, 42, 2641 (2004).

    Article  CAS  Google Scholar 

  6. N. Muradov, Catal. Commun., 2, 89 (2001).

    Article  CAS  Google Scholar 

  7. N. Shah, Y. Wang, D. Panjala and G. P. Huffman, Energy Fuels, 18(3), 727 (2004).

    Article  CAS  Google Scholar 

  8. N. Muradov, J. Power Sources, 118(1), 320 (2003).

    Article  CAS  Google Scholar 

  9. Y. Wang, N. Shah, D. Panjala and G. P. Huffman, Catal. Today, 99(3), 359 (2005).

    Article  CAS  Google Scholar 

  10. S. Takenaka, K. Kawashima, H. Matsune and M. Kishida, Appl. Catal. A: Gen., 321, 165 (2007).

    Article  CAS  Google Scholar 

  11. A. Permsubscul, T. Vitidsant and S. Damronglerd, Korean J. Chem. Eng., 24(1), 37 (2007).

    Article  CAS  Google Scholar 

  12. M. Lazaro, I. Suelves and R. Moliner, Environ. Sci. Technol., 39, 6871 (2005).

    Article  CAS  Google Scholar 

  13. M. H. Kim, E. K. Lee, J. H. Jun, S. J. Kong, G.Y. Han, B. K. Lee, T. J. Lee and K. J. Yoon, Int. J. Hydrogen Energy, 29, 187 (2004).

    Article  CAS  Google Scholar 

  14. S.Y. Lee, B. H. Ryu, G.Y. Han, T. J. Lee and K. J. Yoon, Carbon, 46, 1978 (2008).

    Article  CAS  Google Scholar 

  15. S.Y. Lee, M. S. Kim, J. H. Kwak, G.Y. Han, J. H. Park, T. J. Lee and K. J. Yoon, Carbon, 48, 2030 (2010).

    Article  CAS  Google Scholar 

  16. Y. H. Yoon, S. C. Lee, J.T. Jang, K. J. Yoon, J.W. Bae and G.Y. Han, Int. J. Hydrogen Energy, 39(27), 14800 (2014).

    Article  Google Scholar 

  17. S.H. Yoon, N. K. Park, T. J. Lee, K. J. Yoon and G. Y. Han, Catal. Today, 146, 202 (2009).

    Article  CAS  Google Scholar 

  18. S.Y. Lee, J. H. Kwak, G.Y. Han, T. J. Lee and K. J. Yoon, Carbon, 46, 342 (2008).

    Article  CAS  Google Scholar 

  19. S. S. Kim and S. H. Kim, Fuel, 79, 1943 (2000).

    Article  CAS  Google Scholar 

  20. B.W. Wojciechowski and A. Corma, Catalytic cracking, Marcel Dekker, New York (1986).

    Google Scholar 

  21. N. Muradov, Thermocatalytic CO 2-free production of hydrogen from hydrocarbon fuels, Department of Energy hydrogen program review, NREL/CP-570-30535 (2001).

    Google Scholar 

  22. P.M. Plehiers and G. F. Froment, Oil Gas J., 85(33), 41 (1987).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui Young Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Y., Jang, J.T., Bae, J.W. et al. Thermo-catalytic decomposition of waste lubricating oil over carbon catalyst. Korean J. Chem. Eng. 33, 2891–2897 (2016). https://doi.org/10.1007/s11814-016-0144-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0144-0

Keywords

Navigation