Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Recent advances for serial processes of hazardous chemicals in fully integrated microfluidic systems

  • 363 Accesses

  • 29 Citations

Abstract

The development and enlargement of toxic and hazardous chemicals are severely limited by health and safety concerns. We summarize studies on fully integrated micro-chemical systems and total processes to reduce accidental exposure to various regents that are toxic, explosive, or carcinogenic, which significantly improved the safety of work involving risky compounds. This review covers the leak-free continuous-flow processes of hazardous chemicals in fully integrated microfluidic systems, specially denoted as micro-total envelope systems (μ-TESs), that are conducting a serial process of the generation of hazardous reagents, in-situ purification and separation, subsequent reaction, and product isolation with improved efficiencies. These attempts suggest safe and efficient tools and processes of useful but hazardous chemicals for researchers and manufacturing workers in the field of pharmaceutic discovery, natural products, biology as well as materials synthesis.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    T. Wirth, Microreactors in Organic Synthesis and Catalysis, Wiley-VCH (2008).

  2. 2.

    G.M. Whitesides, Nature, 442, 368 (2006).

  3. 3.

    C. G. Frost and L. Mutton, Green. Chem., 12, 1687 (2010).

  4. 4.

    S. Marre and K. F. Jensen, Chem. Soc. Rev., 39, 1183 (2010).

  5. 5.

    N. Kockmann and D. M. Roberge, Chem. Eng. Technol., 32, 1682 (2009).

  6. 6.

    B. Gutmann, D. Cantillo and C.O. Kappe, Angew. Chem. Int. Ed., 54, 6688 (2015).

  7. 7.

    C.J. Mallia and I.R. Baxendale, Org. Process. Res. Dev., 20, 327 (2016).

  8. 8.

    R. Porta, M. Benaglia and A. Puglisi, Org. Process. Res. Dev., 20, 2 (2016).

  9. 9.

    D. Webb and T. F. Jamison, Chem. Sci., 1, 675 (2010).

  10. 10.

    C. Wiles and P. Watts, Green. Chem., 14, 38 (2012).

  11. 11.

    B. J. Deadman, S.G. Collins and A.R. Maguire, Chem. Eur. J., 21, 2298 (2015).

  12. 12.

    S.T.R. Müller and T. Wirth, ChemSusChem, 8, 245 (2015).

  13. 13.

    H. Amii, A. Nagaki and J.-i. Yoshida, Beilstein J. Org. Chem., 9, 2793 (2013).

  14. 14.

    M. Brzozowski, M. O’Brien, S.V. Ley and A. Polyzos, Acc. Chem. Res., 48, 349 (2015).

  15. 15.

    N. Oger, E. Le Grognec and F.-X. Felpin, Org. Chem. Front., 2, 590 (2015).

  16. 16.

    S.G. Newman and K. F. Jensen, Green. Chem., 15, 1456 (2013).

  17. 17.

    D.T. McQuade and P. H. Seeberger, J. Org. Chem., 78, 6384 (2013).

  18. 18.

    H. P. L. Gemoets, Y. Su, M. Shang, V. Hessel, R. Luque and T. Noel, Chem. Soc. Rev., 45, 83 (2016).

  19. 19.

    P. J. Cossar, L. Hizartzidis, M. I. Simone, A. McCluskey and C. P. Gordon, Org. Biomol. Chem., 13, 7119 (2015).

  20. 20.

    A.K. Singh, D.-H. Ko, N. K. Vishwakarma, S. Jang, K.-I. Min and D.-P. Kim, Nat. Commun., 7 (2016).

  21. 21.

    R.A. Maurya, C. P. Park, J. H. Lee and D.-P. Kim, Angew. Chem. Int. Ed., 50, 5952 (2011).

  22. 22.

    F. Mastronardi, B. Gutmann and C.O. Kappe, Org. Lett., 15, 5590 (2013).

  23. 23.

    M. O’Brien, I.R. Baxendale and S.V. Ley, Org. Lett., 12, 1596 (2010).

  24. 24.

    V.D. Pinho, B. Gutmann, L. S. M. Miranda, R.O. M. A. de Souza and C.O. Kappe, J. Org. Chem., 79, 1555 (2014).

  25. 25.

    V.D. Pinho, B. Gutmann and C.O. Kappe, RSC Adv., 4, 37419 (2014).

  26. 26.

    E. Rossi, P. Woehl and M. Maggini, Org. Process. Res. Dev., 16, 1146 (2012).

  27. 27.

    G. Maas, Angew. Chem. Int. Ed., 48, 8186 (2009).

  28. 28.

    R.A. Maurya, K.-I. Min and D.-P. Kim, Green Chem., 16, 116 (2014).

  29. 29.

    H.E. Bartrum, D.C. Blakemore, C. J. Moody and C. J. Hayes, J. Org. Chem., 75, 8674 (2010).

  30. 30.

    L. J. Martin, A. L. Marzinzik, S.V. Ley and I.R. Baxendale, Org. Lett., 13, 320 (2011).

  31. 31.

    P. S. Bailey, Chem. Rev., 58, 925 (1958).

  32. 32.

    P. S. Bailey, Ozonolysis in Organic Chemistry, Academic Press (1978).

  33. 33.

    W. H. Bunnelle, Chem. Rev., 91, 335 (1991).

  34. 34.

    T. I. Zvereva, V. G. Kasradze, O. B. Kazakova and O. S. Kukovinets, Russ. J. Org. Chem., 46, 1431 (2010).

  35. 35.

    L. B. P.G. Urben, Bretherick’s Handbook of Reactive Chemical Hazards, 7th Ed., Oxford (1990).

  36. 36.

    S. Caron, R.W. Dugger, S. G. Ruggeri, J. A. Ragan and D. H.B. Ripin, Chem. Rev., 106, 2943 (2006).

  37. 37.

    Y. Wada, M. A. Schmidt and K. F. Jensen, Ind. Eng. Chem. Res., 45, 8036 (2006).

  38. 38.

    S. Hübner, U. Bentrup, U. Budde, K. Lovis, T. Dietrich, A. Freitag, L. Küpper and K. Jähnisch, Org. Process. Res. Dev., 13, 952 (2009).

  39. 39.

    M.D. Roydhouse, A. Ghaini, A. Constantinou, A. Cantu-Perez, W. B. Motherwell and A. Gavriilidis, Org. Process. Res. Dev., 15, 989 (2011).

  40. 40.

    M.D. Roydhouse, W.B. Motherwell, A. Constantinou, A. Gavriilidis, R. Wheeler, K. Down and I. Campbell, RSC Adv., 3, 5076 (2013).

  41. 41.

    M. Irfan, T. N. Glasnov and C.O. Kappe, Org. Lett., 13, 984 (2011).

  42. 42.

    C. Battilocchio, I.R. Baxendale, M. Biava, M.O. Kitching and S.V. Ley, Org. Process. Res. Dev., 16, 798 (2012).

  43. 43.

    J. Zak, D. Ron, E. Riva, H. P. Harding, B. C. S. Cross and I.R. Baxendale, Chem. Eur. J., 18, 9901 (2012).

  44. 44.

    F. Fischer and H. Tropsch, Brennstoff-chem., 97 (1926).

  45. 45.

    H. Adkins and G. Krsek, J. Am. Chem. Soc., 71, 3051 (1949).

  46. 46.

    N. I. Sax and R. J. Lewis, Dangerous properties of industrial materials, 7th Ed., Van Nostrand Reinhold (1989).

  47. 47.

    P.W. Miller, N. J. Long, A. J. de Mello, R. Vilar, J. Passchier and A. Gee, Chem. Commun., 546 (2006).

  48. 48.

    M.T. Rahman, T. Fukuyama, N. Kamata, M. Sato and I. Ryu, Chem. Commun., 2236 (2006).

  49. 49.

    E.R. Murphy, J.R. Martinelli, N. Zaborenko, S. L. Buchwald and K. F. Jensen, Angew. Chem. Int. Ed., 46, 1734 (2007).

  50. 50.

    P.W. Miller, N. J. Long, A. J. de Mello, R. Vilar, H. Audrain, D. Bender, J. Passchier and A. Gee, Angew. Chem. Int. Ed., 46, 2875 (2007).

  51. 51.

    P.W. Miller, L.E. Jennings, A. J. de Mello, A.D. Gee, N. J. Long and R. Vilar, Adv. Synth. Catal., 351, 3260 (2009).

  52. 52.

    T. Fukuyama, M.T. Rahman, N. Kamata and I. Ryu, Beilstein J. Org. Chem., 5, 34 (2009).

  53. 53.

    X. Gong, P.W. Miller, A.D. Gee, N. J. Long, A. J. de Mello and R. Vilar, Chem. Eur. J., 18, 2768 (2012).

  54. 54.

    C. Csajági, B. Borcsek, K. Niesz, I. Kovács, Z. Székelyhidi, Z. Bajkó, L. Ürge and F. Darvas, Org. Lett., 10, 1589 (2008).

  55. 55.

    P. Koos, U. Gross, A. Polyzos, M. O'Brien, I. Baxendale and S.V. Ley, Org. Biomol. Chem., 9, 6903 (2011).

  56. 56.

    M.A. Mercadante and N. E. Leadbeater, Org. Biomol. Chem., 9, 6575 (2011).

  57. 57.

    C.B. Kelly, C. Lee, M.A. Mercadante and N.E. Leadbeater, Org. Process. Res. Dev., 15, 717 (2011).

  58. 58.

    M.A. Mercadante and N. E. Leadbeater, Green. Process. Synth., 1, 499 (2012).

  59. 59.

    C. Brancour, T. Fukuyama, Y. Mukai, T. Skrydstrup and I. Ryu, Org. Lett., 15, 2794 (2013).

  60. 60.

    T. Fukuyama, Y. Mukai and I. Ryu, Beilstein J. Org. Chem., 7, 1288 (2011).

  61. 61.

    M. Cartwright and J. Wilkinson, Propellants Explos. Pyrotech., 35, 326 (2010).

  62. 62.

    S. Bräse, C. Gil, K. Knepper and V. Zimmermann, Angew. Chem. Int. Ed., 44, 5188 (2005).

  63. 63.

    M. E. Kopach, M. M. Murray, T. M. Braden, M. E. Kobierski and O. L. Williams, Org. Process. Res. Dev., 13, 152 (2009).

  64. 64.

    M. Weber, G. Yilmaz and G. Wille, Chim. Oggi., 29, 8 (2011).

  65. 65.

    M.M. E. Delville, P. J. Nieuwland, P. Janssen, K. Koch, J. C. M. van Hest and F. P. J. T. Rutjes, Chem. Eng. J., 167, 556 (2011).

  66. 66.

    C.D. Smith, I.R. Baxendale, S. Lanners, J. J. Hayward, S.C. Smith and S.V. Ley, Org. Biomol. Chem., 5, 1559 (2007).

  67. 67.

    I.R. Baxendale, S.V. Ley, A. C. Mansfield and C.D. Smith, Angew. Chem. Int. Ed., 48, 4017 (2009).

  68. 68.

    C.O. Kappe and E. Van der Eycken, Chem. Soc. Rev., 39, 1280 (2010).

  69. 69.

    S. Ceylan, T. Klande, C. Vogt, C. Friese and A. Kirschning, Synlett., 2010, 2009 (2010).

  70. 70.

    A.C. Varas, T. Noël, Q. Wang and V. Hessel, ChemSusChem, 5, 1703 (2012).

  71. 71.

    M. Fuchs, W. Goessler, C. Pilger and C.O. Kappe, Adv. Synth. Catal., 352, 323 (2010).

  72. 72.

    A.R. Bogdan and K. James, Chem. Eur. J., 16, 14506 (2010).

  73. 73.

    A.R. Bogdan and K. James, Org. Lett., 13, 4060 (2011).

  74. 74.

    A.R. Bogdan and N.W. Sach, Adv. Synth. Catal., 351, 849 (2009).

  75. 75.

    P. Zhang, M. G. Russell and T. F. Jamison, Org. Process. Res. Dev., 18, 1567 (2014).

  76. 76.

    H.R. Sahoo, J.G. Kralj and K.F. Jensen, Angew. Chem. Int. Ed., 46, 5704 (2007).

  77. 77.

    B. Gutmann, J.-P. Roduit, D. Roberge and C.O. Kappe, Angew. Chem. Int. Ed., 49, 7101 (2010).

  78. 78.

    B. Gutmann, D. Obermayer, J. P. Roduit, D. M. Roberge and C.O. Kappe, J. Flow. Chem., 2, 8 (2012).

  79. 79.

    L.A. Flippin, Tetrahedron Lett., 32, 6857 (1991).

  80. 80.

    M.B. Talawar, A. P. Agrawal, M. Anniyappan, D. S. Wani, M. K. Bansode and G. M. Gore, J. Hazard. Mater., 137, 1074 (2006).

  81. 81.

    H. Singh, A. S. Chawla, V. K. Kapoor, D. Paul and R. K. Malhotra, Prog. Med. Chem., 17, 151 (1980).

  82. 82.

    R. J. Herr, Bioorganic & Medicinal Chemistry, 10, 3379 (2002).

  83. 83.

    B. Gutmann, J.-P. Roduit, D. Roberge and C.O. Kappe, Chem. Eur. J., 17, 13146 (2011).

  84. 84.

    J.C. Brandt and T. Wirth, Beilstein J. Org. Chem., 5, 30 (2009).

  85. 85.

    C. Viuf and M. Bols, Angew. Chem. Int. Ed., 40, 623 (2001).

  86. 86.

    C.M. Pedersen, L. G. Marinescu and M. Bols, Org. Biomol. Chem., 3, 816 (2005).

  87. 87.

    R. J. Linderman, M. Jaber and B.D. Griedel, J. Org. Chem., 59, 6499 (1994).

  88. 88.

    M.A. Berliner and K. Belecki, J. Org. Chem., 70, 9618 (2005).

  89. 89.

    D.M. Barnes, J. Barkalow and D. J. Plata, Org. Lett., 11, 273 (2009).

  90. 90.

    A. Jasti, S. Prakash and V.K. Shahi, J. Membr. Sci., 428, 470 (2013).

  91. 91.

    A. Mitic and K.V. Gernaey, Chem. Eng. Technol., 38, 1699 (2015).

  92. 92.

    L. Hosta-Rigau, M. J. York-Duran, T. S. Kang and B. Städler, Adv. Funct. Mater., 25, 3860 (2015).

  93. 93.

    A.R. Bogdan, S.L. Poe, D.C. Kubis, S. J. Broadwater and D.T. McQuade, Angew. Chem., 121, 8699 (2009).

  94. 94.

    S. Mascia, P. L. Heider, H. Zhang, R. Lakerveld, B. Benyahia, P. I. Barton, R.D. Braatz, C.L. Cooney, J.M.B. Evans, T. F. Jamison, K. F. Jensen, A. S. Myerson and B. L. Trout, Angew. Chem. Int. Ed., 52, 12359 (2013).

  95. 95.

    P. Zhang, M. G. Russell and T. F. Jamison, Org. Process. Res. Dev., 18, 1567 (2014).

  96. 96.

    K. Gilmore, D. Kopetzki, J.W. Lee, Z. Horvath, D.T. McQuade, A. Seidel-Morgenstern and P.H. Seeberger, Chem. Commun., 50, 12652 (2014).

  97. 97.

    P. L. Heider, S. C. Born, S. Basak, B. Benyahia, R. Lakerveld, H. Zhang, R. Hogan, L. Buchbinder, A. Wolfe, S. Mascia, J.M.B. Evans, T. F. Jamison and K.F. Jensen, Org. Process. Res. Dev., 18, 402 (2014).

  98. 98.

    T.P. Petersen, S. Mirsharghi, P.C. Rummel, S. Thiele, M.M. Rosenkilde, A. Ritzén and T. Ulven, Chem. Eur. J., 19, 9343 (2013).

  99. 99.

    M.D. Symes, P. J. Kitson, J. Yan, C. J. Richmond, G. J. T. Cooper, R.W. Bowman, T. Vilbrandt and L. Cronin, Nat. Chem., 4, 349 (2012).

  100. 100.

    D. E. Fitzpatrick, C. Battilocchio and S.V. Ley, ACS Cent. Sci., 2(3), 131 (2016).

  101. 101.

    A.K. Au, W. Huynh, L.F. Horowitz and A. Folch, Angew. Chem. Int. Ed., 55, 3862 (2016).

Download references

Author information

Correspondence to Dong-Pyo Kim.

Additional information

Dong-Pyo Kim is professor in the Department of Chemical Engineering at Pohang University of Science and Technology (POSTECH) in Korea. He received his B.S. degree (Sogang University, Korea), M.S. degree ((Sogang University, Korea), and Ph.D. degree (Temple University, U.S) all in Chemistry and was a postdoctoral fellow in Univ. of Illinois at Urbana-Champaign, Material Science and Engineering. He worked for several years at the Korea Research Institution of Chemical Technology as senior researcher and he was professor at Chungnam National University for 17 years before joining POSTECH in 2012.

His research interests include material synthesis (preceramic polymer), microfluidic device fabrication, organic/inorganic synthesis in microfluidic system and microbiomass process.

These authors contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Singh, R., Lee, H., Singh, A.K. et al. Recent advances for serial processes of hazardous chemicals in fully integrated microfluidic systems. Korean J. Chem. Eng. 33, 2253–2267 (2016). https://doi.org/10.1007/s11814-016-0114-6

Download citation

Keywords

  • Toxic Chemicals
  • Total Process System
  • Micro-total Envelopment System
  • Separator
  • Extraction Unit
  • Tube in Tube System
  • Dual Channel Microreactor
  • Silicon Nanowire Reactor
  • Diaze Compound
  • Azide
  • Carbon Monoxide
  • Ozone
  • Chloro Methyl Methyl Ether