Korean Journal of Chemical Engineering

, Volume 33, Issue 8, pp 2253–2267 | Cite as

Recent advances for serial processes of hazardous chemicals in fully integrated microfluidic systems

  • Rakhi Singh
  • Hyune-Jea Lee
  • Ajay Kumar Singh
  • Dong-Pyo Kim
Invited Review Paper

Abstract

The development and enlargement of toxic and hazardous chemicals are severely limited by health and safety concerns. We summarize studies on fully integrated micro-chemical systems and total processes to reduce accidental exposure to various regents that are toxic, explosive, or carcinogenic, which significantly improved the safety of work involving risky compounds. This review covers the leak-free continuous-flow processes of hazardous chemicals in fully integrated microfluidic systems, specially denoted as micro-total envelope systems (μ-TESs), that are conducting a serial process of the generation of hazardous reagents, in-situ purification and separation, subsequent reaction, and product isolation with improved efficiencies. These attempts suggest safe and efficient tools and processes of useful but hazardous chemicals for researchers and manufacturing workers in the field of pharmaceutic discovery, natural products, biology as well as materials synthesis.

Keywords

Toxic Chemicals Total Process System Micro-total Envelopment System Separator Extraction Unit Tube in Tube System Dual Channel Microreactor Silicon Nanowire Reactor Diaze Compound Azide Carbon Monoxide Ozone Chloro Methyl Methyl Ether 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Wirth, Microreactors in Organic Synthesis and Catalysis, Wiley-VCH (2008).CrossRefGoogle Scholar
  2. 2.
    G.M. Whitesides, Nature, 442, 368 (2006).CrossRefGoogle Scholar
  3. 3.
    C. G. Frost and L. Mutton, Green. Chem., 12, 1687 (2010).CrossRefGoogle Scholar
  4. 4.
    S. Marre and K. F. Jensen, Chem. Soc. Rev., 39, 1183 (2010).CrossRefGoogle Scholar
  5. 5.
    N. Kockmann and D. M. Roberge, Chem. Eng. Technol., 32, 1682 (2009).CrossRefGoogle Scholar
  6. 6.
    B. Gutmann, D. Cantillo and C.O. Kappe, Angew. Chem. Int. Ed., 54, 6688 (2015).CrossRefGoogle Scholar
  7. 7.
    C.J. Mallia and I.R. Baxendale, Org. Process. Res. Dev., 20, 327 (2016).CrossRefGoogle Scholar
  8. 8.
    R. Porta, M. Benaglia and A. Puglisi, Org. Process. Res. Dev., 20, 2 (2016).CrossRefGoogle Scholar
  9. 9.
    D. Webb and T. F. Jamison, Chem. Sci., 1, 675 (2010).CrossRefGoogle Scholar
  10. 10.
    C. Wiles and P. Watts, Green. Chem., 14, 38 (2012).CrossRefGoogle Scholar
  11. 11.
    B. J. Deadman, S.G. Collins and A.R. Maguire, Chem. Eur. J., 21, 2298 (2015).CrossRefGoogle Scholar
  12. 12.
    S.T.R. Müller and T. Wirth, ChemSusChem, 8, 245 (2015).CrossRefGoogle Scholar
  13. 13.
    H. Amii, A. Nagaki and J.-i. Yoshida, Beilstein J. Org. Chem., 9, 2793 (2013).CrossRefGoogle Scholar
  14. 14.
    M. Brzozowski, M. O’Brien, S.V. Ley and A. Polyzos, Acc. Chem. Res., 48, 349 (2015).CrossRefGoogle Scholar
  15. 15.
    N. Oger, E. Le Grognec and F.-X. Felpin, Org. Chem. Front., 2, 590 (2015).CrossRefGoogle Scholar
  16. 16.
    S.G. Newman and K. F. Jensen, Green. Chem., 15, 1456 (2013).CrossRefGoogle Scholar
  17. 17.
    D.T. McQuade and P. H. Seeberger, J. Org. Chem., 78, 6384 (2013).CrossRefGoogle Scholar
  18. 18.
    H. P. L. Gemoets, Y. Su, M. Shang, V. Hessel, R. Luque and T. Noel, Chem. Soc. Rev., 45, 83 (2016).CrossRefGoogle Scholar
  19. 19.
    P. J. Cossar, L. Hizartzidis, M. I. Simone, A. McCluskey and C. P. Gordon, Org. Biomol. Chem., 13, 7119 (2015).CrossRefGoogle Scholar
  20. 20.
    A.K. Singh, D.-H. Ko, N. K. Vishwakarma, S. Jang, K.-I. Min and D.-P. Kim, Nat. Commun., 7 (2016).Google Scholar
  21. 21.
    R.A. Maurya, C. P. Park, J. H. Lee and D.-P. Kim, Angew. Chem. Int. Ed., 50, 5952 (2011).CrossRefGoogle Scholar
  22. 22.
    F. Mastronardi, B. Gutmann and C.O. Kappe, Org. Lett., 15, 5590 (2013).CrossRefGoogle Scholar
  23. 23.
    M. O’Brien, I.R. Baxendale and S.V. Ley, Org. Lett., 12, 1596 (2010).CrossRefGoogle Scholar
  24. 24.
    V.D. Pinho, B. Gutmann, L. S. M. Miranda, R.O. M. A. de Souza and C.O. Kappe, J. Org. Chem., 79, 1555 (2014).CrossRefGoogle Scholar
  25. 25.
    V.D. Pinho, B. Gutmann and C.O. Kappe, RSC Adv., 4, 37419 (2014).CrossRefGoogle Scholar
  26. 26.
    E. Rossi, P. Woehl and M. Maggini, Org. Process. Res. Dev., 16, 1146 (2012).CrossRefGoogle Scholar
  27. 27.
    G. Maas, Angew. Chem. Int. Ed., 48, 8186 (2009).CrossRefGoogle Scholar
  28. 28.
    R.A. Maurya, K.-I. Min and D.-P. Kim, Green Chem., 16, 116 (2014).CrossRefGoogle Scholar
  29. 29.
    H.E. Bartrum, D.C. Blakemore, C. J. Moody and C. J. Hayes, J. Org. Chem., 75, 8674 (2010).CrossRefGoogle Scholar
  30. 30.
    L. J. Martin, A. L. Marzinzik, S.V. Ley and I.R. Baxendale, Org. Lett., 13, 320 (2011).CrossRefGoogle Scholar
  31. 31.
    P. S. Bailey, Chem. Rev., 58, 925 (1958).CrossRefGoogle Scholar
  32. 32.
    P. S. Bailey, Ozonolysis in Organic Chemistry, Academic Press (1978).Google Scholar
  33. 33.
    W. H. Bunnelle, Chem. Rev., 91, 335 (1991).CrossRefGoogle Scholar
  34. 34.
    T. I. Zvereva, V. G. Kasradze, O. B. Kazakova and O. S. Kukovinets, Russ. J. Org. Chem., 46, 1431 (2010).CrossRefGoogle Scholar
  35. 35.
    L. B. P.G. Urben, Bretherick’s Handbook of Reactive Chemical Hazards, 7th Ed., Oxford (1990).Google Scholar
  36. 36.
    S. Caron, R.W. Dugger, S. G. Ruggeri, J. A. Ragan and D. H.B. Ripin, Chem. Rev., 106, 2943 (2006).CrossRefGoogle Scholar
  37. 37.
    Y. Wada, M. A. Schmidt and K. F. Jensen, Ind. Eng. Chem. Res., 45, 8036 (2006).CrossRefGoogle Scholar
  38. 38.
    S. Hübner, U. Bentrup, U. Budde, K. Lovis, T. Dietrich, A. Freitag, L. Küpper and K. Jähnisch, Org. Process. Res. Dev., 13, 952 (2009).CrossRefGoogle Scholar
  39. 39.
    M.D. Roydhouse, A. Ghaini, A. Constantinou, A. Cantu-Perez, W. B. Motherwell and A. Gavriilidis, Org. Process. Res. Dev., 15, 989 (2011).CrossRefGoogle Scholar
  40. 40.
    M.D. Roydhouse, W.B. Motherwell, A. Constantinou, A. Gavriilidis, R. Wheeler, K. Down and I. Campbell, RSC Adv., 3, 5076 (2013).CrossRefGoogle Scholar
  41. 41.
    M. Irfan, T. N. Glasnov and C.O. Kappe, Org. Lett., 13, 984 (2011).CrossRefGoogle Scholar
  42. 42.
    C. Battilocchio, I.R. Baxendale, M. Biava, M.O. Kitching and S.V. Ley, Org. Process. Res. Dev., 16, 798 (2012).CrossRefGoogle Scholar
  43. 43.
    J. Zak, D. Ron, E. Riva, H. P. Harding, B. C. S. Cross and I.R. Baxendale, Chem. Eur. J., 18, 9901 (2012).CrossRefGoogle Scholar
  44. 44.
    F. Fischer and H. Tropsch, Brennstoff-chem., 97 (1926).Google Scholar
  45. 45.
    H. Adkins and G. Krsek, J. Am. Chem. Soc., 71, 3051 (1949).CrossRefGoogle Scholar
  46. 46.
    N. I. Sax and R. J. Lewis, Dangerous properties of industrial materials, 7th Ed., Van Nostrand Reinhold (1989).Google Scholar
  47. 47.
    P.W. Miller, N. J. Long, A. J. de Mello, R. Vilar, J. Passchier and A. Gee, Chem. Commun., 546 (2006).Google Scholar
  48. 48.
    M.T. Rahman, T. Fukuyama, N. Kamata, M. Sato and I. Ryu, Chem. Commun., 2236 (2006).Google Scholar
  49. 49.
    E.R. Murphy, J.R. Martinelli, N. Zaborenko, S. L. Buchwald and K. F. Jensen, Angew. Chem. Int. Ed., 46, 1734 (2007).CrossRefGoogle Scholar
  50. 50.
    P.W. Miller, N. J. Long, A. J. de Mello, R. Vilar, H. Audrain, D. Bender, J. Passchier and A. Gee, Angew. Chem. Int. Ed., 46, 2875 (2007).CrossRefGoogle Scholar
  51. 51.
    P.W. Miller, L.E. Jennings, A. J. de Mello, A.D. Gee, N. J. Long and R. Vilar, Adv. Synth. Catal., 351, 3260 (2009).CrossRefGoogle Scholar
  52. 52.
    T. Fukuyama, M.T. Rahman, N. Kamata and I. Ryu, Beilstein J. Org. Chem., 5, 34 (2009).CrossRefGoogle Scholar
  53. 53.
    X. Gong, P.W. Miller, A.D. Gee, N. J. Long, A. J. de Mello and R. Vilar, Chem. Eur. J., 18, 2768 (2012).CrossRefGoogle Scholar
  54. 54.
    C. Csajági, B. Borcsek, K. Niesz, I. Kovács, Z. Székelyhidi, Z. Bajkó, L. Ürge and F. Darvas, Org. Lett., 10, 1589 (2008).CrossRefGoogle Scholar
  55. 55.
    P. Koos, U. Gross, A. Polyzos, M. O'Brien, I. Baxendale and S.V. Ley, Org. Biomol. Chem., 9, 6903 (2011).CrossRefGoogle Scholar
  56. 56.
    M.A. Mercadante and N. E. Leadbeater, Org. Biomol. Chem., 9, 6575 (2011).CrossRefGoogle Scholar
  57. 57.
    C.B. Kelly, C. Lee, M.A. Mercadante and N.E. Leadbeater, Org. Process. Res. Dev., 15, 717 (2011).CrossRefGoogle Scholar
  58. 58.
    M.A. Mercadante and N. E. Leadbeater, Green. Process. Synth., 1, 499 (2012).Google Scholar
  59. 59.
    C. Brancour, T. Fukuyama, Y. Mukai, T. Skrydstrup and I. Ryu, Org. Lett., 15, 2794 (2013).CrossRefGoogle Scholar
  60. 60.
    T. Fukuyama, Y. Mukai and I. Ryu, Beilstein J. Org. Chem., 7, 1288 (2011).CrossRefGoogle Scholar
  61. 61.
    M. Cartwright and J. Wilkinson, Propellants Explos. Pyrotech., 35, 326 (2010).CrossRefGoogle Scholar
  62. 62.
    S. Bräse, C. Gil, K. Knepper and V. Zimmermann, Angew. Chem. Int. Ed., 44, 5188 (2005).CrossRefGoogle Scholar
  63. 63.
    M. E. Kopach, M. M. Murray, T. M. Braden, M. E. Kobierski and O. L. Williams, Org. Process. Res. Dev., 13, 152 (2009).CrossRefGoogle Scholar
  64. 64.
    M. Weber, G. Yilmaz and G. Wille, Chim. Oggi., 29, 8 (2011).Google Scholar
  65. 65.
    M.M. E. Delville, P. J. Nieuwland, P. Janssen, K. Koch, J. C. M. van Hest and F. P. J. T. Rutjes, Chem. Eng. J., 167, 556 (2011).CrossRefGoogle Scholar
  66. 66.
    C.D. Smith, I.R. Baxendale, S. Lanners, J. J. Hayward, S.C. Smith and S.V. Ley, Org. Biomol. Chem., 5, 1559 (2007).CrossRefGoogle Scholar
  67. 67.
    I.R. Baxendale, S.V. Ley, A. C. Mansfield and C.D. Smith, Angew. Chem. Int. Ed., 48, 4017 (2009).CrossRefGoogle Scholar
  68. 68.
    C.O. Kappe and E. Van der Eycken, Chem. Soc. Rev., 39, 1280 (2010).CrossRefGoogle Scholar
  69. 69.
    S. Ceylan, T. Klande, C. Vogt, C. Friese and A. Kirschning, Synlett., 2010, 2009 (2010).CrossRefGoogle Scholar
  70. 70.
    A.C. Varas, T. Noël, Q. Wang and V. Hessel, ChemSusChem, 5, 1703 (2012).CrossRefGoogle Scholar
  71. 71.
    M. Fuchs, W. Goessler, C. Pilger and C.O. Kappe, Adv. Synth. Catal., 352, 323 (2010).CrossRefGoogle Scholar
  72. 72.
    A.R. Bogdan and K. James, Chem. Eur. J., 16, 14506 (2010).CrossRefGoogle Scholar
  73. 73.
    A.R. Bogdan and K. James, Org. Lett., 13, 4060 (2011).CrossRefGoogle Scholar
  74. 74.
    A.R. Bogdan and N.W. Sach, Adv. Synth. Catal., 351, 849 (2009).CrossRefGoogle Scholar
  75. 75.
    P. Zhang, M. G. Russell and T. F. Jamison, Org. Process. Res. Dev., 18, 1567 (2014).CrossRefGoogle Scholar
  76. 76.
    H.R. Sahoo, J.G. Kralj and K.F. Jensen, Angew. Chem. Int. Ed., 46, 5704 (2007).CrossRefGoogle Scholar
  77. 77.
    B. Gutmann, J.-P. Roduit, D. Roberge and C.O. Kappe, Angew. Chem. Int. Ed., 49, 7101 (2010).CrossRefGoogle Scholar
  78. 78.
    B. Gutmann, D. Obermayer, J. P. Roduit, D. M. Roberge and C.O. Kappe, J. Flow. Chem., 2, 8 (2012).CrossRefGoogle Scholar
  79. 79.
    L.A. Flippin, Tetrahedron Lett., 32, 6857 (1991).CrossRefGoogle Scholar
  80. 80.
    M.B. Talawar, A. P. Agrawal, M. Anniyappan, D. S. Wani, M. K. Bansode and G. M. Gore, J. Hazard. Mater., 137, 1074 (2006).CrossRefGoogle Scholar
  81. 81.
    H. Singh, A. S. Chawla, V. K. Kapoor, D. Paul and R. K. Malhotra, Prog. Med. Chem., 17, 151 (1980).CrossRefGoogle Scholar
  82. 82.
    R. J. Herr, Bioorganic & Medicinal Chemistry, 10, 3379 (2002).CrossRefGoogle Scholar
  83. 83.
    B. Gutmann, J.-P. Roduit, D. Roberge and C.O. Kappe, Chem. Eur. J., 17, 13146 (2011).CrossRefGoogle Scholar
  84. 84.
    J.C. Brandt and T. Wirth, Beilstein J. Org. Chem., 5, 30 (2009).CrossRefGoogle Scholar
  85. 85.
    C. Viuf and M. Bols, Angew. Chem. Int. Ed., 40, 623 (2001).CrossRefGoogle Scholar
  86. 86.
    C.M. Pedersen, L. G. Marinescu and M. Bols, Org. Biomol. Chem., 3, 816 (2005).CrossRefGoogle Scholar
  87. 87.
    R. J. Linderman, M. Jaber and B.D. Griedel, J. Org. Chem., 59, 6499 (1994).CrossRefGoogle Scholar
  88. 88.
    M.A. Berliner and K. Belecki, J. Org. Chem., 70, 9618 (2005).CrossRefGoogle Scholar
  89. 89.
    D.M. Barnes, J. Barkalow and D. J. Plata, Org. Lett., 11, 273 (2009).CrossRefGoogle Scholar
  90. 90.
    A. Jasti, S. Prakash and V.K. Shahi, J. Membr. Sci., 428, 470 (2013).CrossRefGoogle Scholar
  91. 91.
    A. Mitic and K.V. Gernaey, Chem. Eng. Technol., 38, 1699 (2015).CrossRefGoogle Scholar
  92. 92.
    L. Hosta-Rigau, M. J. York-Duran, T. S. Kang and B. Städler, Adv. Funct. Mater., 25, 3860 (2015).CrossRefGoogle Scholar
  93. 93.
    A.R. Bogdan, S.L. Poe, D.C. Kubis, S. J. Broadwater and D.T. McQuade, Angew. Chem., 121, 8699 (2009).CrossRefGoogle Scholar
  94. 94.
    S. Mascia, P. L. Heider, H. Zhang, R. Lakerveld, B. Benyahia, P. I. Barton, R.D. Braatz, C.L. Cooney, J.M.B. Evans, T. F. Jamison, K. F. Jensen, A. S. Myerson and B. L. Trout, Angew. Chem. Int. Ed., 52, 12359 (2013).CrossRefGoogle Scholar
  95. 95.
    P. Zhang, M. G. Russell and T. F. Jamison, Org. Process. Res. Dev., 18, 1567 (2014).CrossRefGoogle Scholar
  96. 96.
    K. Gilmore, D. Kopetzki, J.W. Lee, Z. Horvath, D.T. McQuade, A. Seidel-Morgenstern and P.H. Seeberger, Chem. Commun., 50, 12652 (2014).CrossRefGoogle Scholar
  97. 97.
    P. L. Heider, S. C. Born, S. Basak, B. Benyahia, R. Lakerveld, H. Zhang, R. Hogan, L. Buchbinder, A. Wolfe, S. Mascia, J.M.B. Evans, T. F. Jamison and K.F. Jensen, Org. Process. Res. Dev., 18, 402 (2014).CrossRefGoogle Scholar
  98. 98.
    T.P. Petersen, S. Mirsharghi, P.C. Rummel, S. Thiele, M.M. Rosenkilde, A. Ritzén and T. Ulven, Chem. Eur. J., 19, 9343 (2013).CrossRefGoogle Scholar
  99. 99.
    M.D. Symes, P. J. Kitson, J. Yan, C. J. Richmond, G. J. T. Cooper, R.W. Bowman, T. Vilbrandt and L. Cronin, Nat. Chem., 4, 349 (2012).CrossRefGoogle Scholar
  100. 100.
    D. E. Fitzpatrick, C. Battilocchio and S.V. Ley, ACS Cent. Sci., 2(3), 131 (2016).CrossRefGoogle Scholar
  101. 101.
    A.K. Au, W. Huynh, L.F. Horowitz and A. Folch, Angew. Chem. Int. Ed., 55, 3862 (2016).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2016

Authors and Affiliations

  • Rakhi Singh
    • 1
  • Hyune-Jea Lee
    • 1
  • Ajay Kumar Singh
    • 1
  • Dong-Pyo Kim
    • 1
  1. 1.Center of Applied Microfluidic Chemistry, Department of Chemical EngineeringPOSTECH (Pohang University of Science and Technology)PohangKorea

Personalised recommendations