Korean Journal of Chemical Engineering

, Volume 33, Issue 9, pp 2582–2588 | Cite as

Fe/N/C catalysts systhesized using graphene aerogel for electrocatalytic oxygen reduction reaction in an acidic condition

  • Chi-Woo Roh
  • Hyunjoo LeeEmail author


Graphene aerogel was modified with polyaniline and Fe precursors to produce Fe/N/C catalysts for electrocatalytic oxygen reduction reaction in the acidic condition. The graphene aerogel was produced by a simple hydrothermal treatment of graphene oxide dispersion with a high surface area. Aniline was polymerized with the graphene aerogel powder, and the pyrolysis of the resulting material with FeCl3 produced Fe/N/C catalyst. The loading amount on the electrode and the catalyst ink concentration was carefully selected to avoid the mass transfer limitation inside the catalyst layer. The pyrolysis temperature affected the states of nitrogen sites on the catalyst; the sample prepared at 900 °C presented the highest mass activity. The sulfur was also doped with various amounts of FeSO4 with enhanced mass activity of up to 2.1 mA/mg at 0.8 V in 0.5 M H2SO4 solution. Its durability was also tested by repeating cyclic voltammetry in a range of 0.6–1.1 V 5000 cycles. This graphene-aerogel-based carbon catalysts showed improved activity and durability for the oxygen reduction reaction in the acidic condition.


Fe/N/C Polyaniline Oxygen Reduction Reaction Acidic Condition Graphene Aerogel 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Damjanovic, M. A. Genshaw and J.O. M. Bockris, J. Chem. Phys., 45, 4057 (1966).CrossRefGoogle Scholar
  2. 2.
    B. Wang, J. Power Sources, 152, 1 (2005).CrossRefGoogle Scholar
  3. 3.
    R. Jasinski, Nature, 201, 1212 (1964).CrossRefGoogle Scholar
  4. 4.
    M. Lefevre, E. Proietti, F. Jaouen and J. P. Dodelet, Science, 324, 71 (2009).CrossRefGoogle Scholar
  5. 5.
    H.W. Liang, W. Wei, Z.S. Wu, X.L. Feng and K. Mullen, J. Am. Chem. Soc., 135, 16002 (2013).CrossRefGoogle Scholar
  6. 6.
    G. Wu, K. L. More, C. M. Johnston and P. Zelenay, Science, 332, 443 (2011).CrossRefGoogle Scholar
  7. 7.
    S. Kattel, P. Atanassov and B. Kiefer, Phys. Chem. Chem. Phys., 15, 148 (2013).CrossRefGoogle Scholar
  8. 8.
    B. Jeong, D. Shin, H. Jeon, J.D. Ocon, B. S. Mun, J. Baik, H. J. Shin and J. Lee, ChemSusChem, 7, 1289 (2014).CrossRefGoogle Scholar
  9. 9.
    S. Yasuda, L. Yu, J. Kim and K. Murakoshi, Chem. Commun., 49, 9627 (2013).CrossRefGoogle Scholar
  10. 10.
    W. P. Ouyang, D.R. Zeng, X. Yu, F.Y. Xie, W. H. Zhang, J. Chen, J. Yan, F. J. Xie, L. Wang, H. Meng and D. S. Yuan, Int. J. Hydrogen Energy, 39, 15996 (2014).CrossRefGoogle Scholar
  11. 11.
    U. Tylus, Q.Y. Jia, K. Strickland, N. Ramaswamy, A. Serov, P. Atanassov and S. Mukerjee, J. Phys. Chem. C, 118, 8999 (2014).CrossRefGoogle Scholar
  12. 12.
    A. Zitolo, V. Goellner, V. Armel, M.T. Sougrati, T. Mineva, L. Stievano, E. Fonda and F. Jaouen, Nat. Mater., 14, 937 (2015).CrossRefGoogle Scholar
  13. 13.
    A. Muthukrishnan, Y. Nabae, T. Okajima and T. Ohsaka, ACS Catal., 5, 5194 (2015).CrossRefGoogle Scholar
  14. 14.
    Y.G. Li, W. Zhou, H. L. Wang, L. M. Xie, Y.Y. Liang, F. Wei, J.C. Idrobo, S. J. Pennycook and H. J. Dai, Nat. Nanotechnol., 7, 394 (2012).CrossRefGoogle Scholar
  15. 15.
    J.Y. Cheon, T. Kim, Y. Choi, H.Y. Jeong, M. G. Kim, Y. J. Sa, J. Kim, Z. Lee, T. H. Yang, K. Kwon, O. Terasaki, G. G. Park, R.R. Adzic and S. H. Joo, Sci. Rep., 3 (2013).Google Scholar
  16. 16.
    L.T. Le, M. H. Ervin, H.W. Qiu, B. E. Fuchs and W.Y. Lee, Electrochem. Commun., 13, 355 (2011).CrossRefGoogle Scholar
  17. 17.
    M.D. Stoller, S. J. Park, Y.W. Zhu, J. H. An and R. S. Ruoff, Nano Lett., 8, 3498 (2008).CrossRefGoogle Scholar
  18. 18.
    D.W. Wang, Y.G. Min, Y.H. Yu and B. Peng, J. Colloid Interface Sci., 417, 270 (2014).CrossRefGoogle Scholar
  19. 19.
    M. H. Liang and L. J. Zhi, J. Mater. Chem., 19, 5871 (2009).CrossRefGoogle Scholar
  20. 20.
    M. Pumera, Energy Environ. Sci., 4, 668 (2011).CrossRefGoogle Scholar
  21. 21.
    C. H. Lu, H. H. Yang, C. L. Zhu, X. Chen and G. N. Chen, Angew. Chem. Int. Ed., 48, 4785 (2009).CrossRefGoogle Scholar
  22. 22.
    F. Schedin, A. K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M. I. Katsnelson and K. S. Novoselov, Nat. Mater., 6, 652 (2007).CrossRefGoogle Scholar
  23. 23.
    H.W. Hu, J. H. Xin, H. Hu, X.W. Wang and Y.Y. Kong, Appl. Catal. A, 492, 1 (2015).CrossRefGoogle Scholar
  24. 24.
    Y.C. Si and E.T. Samulski, Chem. Mater., 20, 6792 (2008).CrossRefGoogle Scholar
  25. 25.
    J. Yan, T. Wei, B. Shao, F.Q. Ma, Z. J. Fan, M.L. Zhang, C. Zheng, Y.C. Shang, W. Z. Qian and F. Wei, Carbon, 48, 1731 (2010).CrossRefGoogle Scholar
  26. 26.
    M.W. Chung, C. H. Choi, S.Y. Lee and S. I. Woo, Nano Energy, 11, 526 (2015).CrossRefGoogle Scholar
  27. 27.
    C. Li and G.Q. Shi, Adv. Mater., 26, 3992 (2014).CrossRefGoogle Scholar
  28. 28.
    L. L. Jiang and Z. J. Fan, Nanoscale, 6, 1922 (2014).CrossRefGoogle Scholar
  29. 29.
    S. Han, D.Q. Wu, S. Li, F. Zhang and X. L. Feng, Adv. Mater., 26, 849 (2014).CrossRefGoogle Scholar
  30. 30.
    C. Li and G.Q. Shi, Nanoscale, 4, 5549 (2012).CrossRefGoogle Scholar
  31. 31.
    V. Chabot, D. Higgins, A. P. Yu, X. C. Xiao, Z.W. Chen and J. J. Zhang, Energy Environ. Sci., 7, 1564 (2014).CrossRefGoogle Scholar
  32. 32.
    X.D. Huang, K. Qian, J. Yang, J. Zhang, L. Li, C.Z. Yu and D.Y. Zhao, Adv. Mater., 24, 4419 (2012).CrossRefGoogle Scholar
  33. 33.
    Y.X. Xu, K.X. Sheng, C. Li and G.Q. Shi, ACS Nano, 4, 4324 (2010).CrossRefGoogle Scholar
  34. 34.
    D. Ghosh, S. Giri, A. Mandal and C. K. Das, Appl. Surf. Sci., 276, 120 (2013).CrossRefGoogle Scholar
  35. 35.
    C.M.S. Izumi, V.R.L. Constantino, A.M.C. Ferreira and M. L.A. Temperini, Synth. Met., 156, 654 (2006).CrossRefGoogle Scholar
  36. 36.
    G. Wu, C. Zhongwei, A. Kateryna, H. G. Fernando and P. Zelenay, ECS Trans., 16, 159 (2008).CrossRefGoogle Scholar
  37. 37.
    D.C. Marcano, D.V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Z. Sun, A. Slesarev, L. B. Alemany, W. Lu and J.M. Tour, ACS Nano, 4, 4806 (2010).CrossRefGoogle Scholar
  38. 38.
    C. H. Choi, H. K. Lim, M.W. Chung, J. C. Park, H. Shin, H. Kim and S. I. Woo, J. Am. Chem. Soc., 136, 9070 (2014).CrossRefGoogle Scholar
  39. 39.
    J. Liang, Y. Jiao, M. Jaroniec and S. Z. Qiao, Angew. Chem. Int. Ed., 51, 11496 (2012).CrossRefGoogle Scholar
  40. 40.
    L. P. Zhang and Z.H. Xia, J. Phys. Chem. C, 115, 11170 (2011).CrossRefGoogle Scholar
  41. 41.
    C. H. Choi, C. Baldizzone, J. P. Grote, A. K. Schuppert, F. Jaouen and K. J. J. Mayrhofer, Angew. Chem. Int. Ed., 54, 12753 (2015).CrossRefGoogle Scholar
  42. 42.
    X. J. Zhou, Z.Y. Bai, M. J. Wu, J. L. Qiao and Z.W. Chen, J. Mater. Chem. A, 3, 3343 (2015).CrossRefGoogle Scholar
  43. 43.
    A.H.A.M. Videla, S. Ban, S. Specchia, L. Zhang and J. J. Zhang, Carbon, 76, 386 (2014).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2016

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and TechnologyDaejeonKorea

Personalised recommendations