Korean Journal of Chemical Engineering

, Volume 33, Issue 9, pp 2547–2554 | Cite as

CeO2-TiO2 catalyst prepared by physical mixing for NH3 selective catalytic reduction: Evidence about the migration of sulfates from TiO2 to CeO2 via simple calcination

  • Inhak Song
  • Seunghee Youn
  • Hwangho Lee
  • Do Heui Kim
Catalysis, Reaction Engineering

Abstract

A mechanical mixture of CeO2 and TiO2 powder with a small amount of sulfate was applied for the selective catalytic reduction (SCR) of NO with NH3. After calcination at 500 oC, the mixed sample showed significantly enhanced activity and selectivity compared to the uncalcined one and, moreover, demonstrated even higher activity than the conventional V2O5/TiO2 catalyst above 300 °C. Combined characterization results revealed that the main active sites were newly formed sulfate species on CeO2, the number of which increased with calcination. Temperatureresolved DRIFT spectra provided convincing evidence about the migration of sulfate species from TiO2 to CeO2, as confirmed from the shift of v(S=O) band as a result of the mechanical mixing and the subsequent calcination.

Keywords

Selective Catalytic Reduction Sulfation CeO2 TiO2 Sulfate Migration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.N. Wan Abdullah, W.A. Wan Abu Bakar and R. Ali, Korean J. Chem. Eng., 32, 1999 (2015).CrossRefGoogle Scholar
  2. 2.
    S. G. Lee, H. J. Lee, I. Song, S. Youn, D. H. Kim and S. J. Cho, Sci. Rep., 5, 12702 (2015).CrossRefGoogle Scholar
  3. 3.
    S. Youn, S. Jeong and D. H. Kim, Catal. Today, 232, 185 (2014).CrossRefGoogle Scholar
  4. 4.
    S.T. Choo, I. S. Nam, S.W. Ham and J.B. Lee, Korean J. Chem. Eng., 20, 273 (2003).CrossRefGoogle Scholar
  5. 5.
    Q. Guo, W. Jing, S. Cheng, Z. Huang, D. Sun, Y. Hou and X. Han, Korean J. Chem. Eng., 32, 2257 (2015).CrossRefGoogle Scholar
  6. 6.
    T. Gu, Y. Liu, X. Weng, H. Wang and Z. Wu, Catal. Commun., 12, 310 (2010).CrossRefGoogle Scholar
  7. 7.
    S. Yang, Y. Guo, H. Chang, L. Ma, Y. Peng, Z. Qu, N. Yan, C. Wang and J. Li, Appl. Catal., B, 136-137, 19 (2013).CrossRefGoogle Scholar
  8. 8.
    L. Zhang, W. Zou, K. Ma, Y. Cao, Y. Xiong, S. Wu, C. Tang, F. Gao and L. Dong, J. Phys. Chem. C, 119, 1155 (2015).CrossRefGoogle Scholar
  9. 9.
    C. Liu, L. Chen, J. Li, L. Ma, H. Arandiyan, Y. Du, J. Xu and J. Hao, Environ. Sci. Technol., 46, 6182 (2012).CrossRefGoogle Scholar
  10. 10.
    Z. Wu, R. Jin, H. Wang and Y. Liu, Catal. Commun., 10, 935 (2009).CrossRefGoogle Scholar
  11. 11.
    M. Waqif, P. Bazin, O. Saur, J. C. Lavalley, G. Blanchard and O. Touret, Appl. Catal., B, 11, 193 (1997).CrossRefGoogle Scholar
  12. 12.
    T. Zhang, R. Qu, W. Su and J. Li, Appl. Catal., B, 176-177, 338 (2015).CrossRefGoogle Scholar
  13. 13.
    G. Busca, L. Lietti, G. Ramis and F. Berti, Appl. Catal., B, 18, 1 (1998).CrossRefGoogle Scholar
  14. 14.
    P. Li, Y. Xin, Q. Li, Z. Wang, Z. Zhang and L. Zheng, Environ. Sci. Technol., 46, 9600 (2012).CrossRefGoogle Scholar
  15. 15.
    P.G.W.A. Kompio, A. Brückner, F. Hipler, G. Auer, E. Löffler and W. Grünert, J. Catal., 286, 237 (2012).CrossRefGoogle Scholar
  16. 16.
    M. Sun, G. Zou, S. Xu and X. Wang, Mater. Chem. Phys., 134, 912 (2012).CrossRefGoogle Scholar
  17. 17.
    S.M. Jung and P. Grange, Catal. Today, 59, 305 (2000).CrossRefGoogle Scholar
  18. 18.
    O. Saur, M. Bensitel, A. B. Mohammed Saad, J. C. Lavalley, C. P. Tripp and B. A. Morrow, J. Catal., 99, 104 (1986).CrossRefGoogle Scholar
  19. 19.
    H. Hu, S. Cai, H. Li, L. Huang, L. Shi and D. Zhang, J. Phys. Chem. C, 119, 22924 (2015).CrossRefGoogle Scholar
  20. 20.
    B. Jiang, Z. Li and S.-C. Lee, Chem. Eng. J., 225, 52 (2013).CrossRefGoogle Scholar
  21. 21.
    L. F. Scatena, M.G. Brown and G.L. Richmond, Science, 292, 908 (2001).CrossRefGoogle Scholar
  22. 22.
    S. Bailey, G. F. Froment, J.W. Snoeck and K.C. Waugh, Catal. Lett., 30, 99 (1995).CrossRefGoogle Scholar
  23. 23.
    J. Xu, Y.-Q. Deng, X.-M. Zhang, Y. Luo, W. Mao, X.-J. Yang, L. Ouyang, P. Tian and Y.-F. Han, ACS Catal., 4, 4106 (2014).CrossRefGoogle Scholar
  24. 24.
    P. Bazin, O. Saur, F. C. Meunier, M. Daturi, J. C. Lavalley, A. M. Le Govic, V. Harlé and G. Blanchard, Appl. Catal., B, 90, 368 (2009).CrossRefGoogle Scholar
  25. 25.
    L. Zhang, L. Li, Y. Cao, X. Yao, C. Ge, F. Gao, Y. Deng, C. Tang and L. Dong, Appl. Catal., B, 165, 589 (2015).CrossRefGoogle Scholar
  26. 26.
    B. Li and R.D. Gonzalez, Catal. Today, 46, 55 (1998).CrossRefGoogle Scholar
  27. 27.
    C. E. Nanayakkara, J. Pettibone and V. H. Grassian, Phys. Chem. Chem. Phys., 14, 6957 (2012).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2016

Authors and Affiliations

  • Inhak Song
    • 1
  • Seunghee Youn
    • 1
  • Hwangho Lee
    • 1
  • Do Heui Kim
    • 1
  1. 1.School of Chemical and Biological Engineering, Institute of Chemical ProcessesSeoul National UniversitySeoulKorea

Personalised recommendations