Skip to main content
Log in

Numerical simulation of flow field characteristics in a gas-liquid-solid agitated tank

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Computational fluid dynamics simulation was carried out to investigate flow field characteristics in a gas-liquid-solid agitated tank. The Eulerian multifluid model along with standard k-ε turbulence model was employed in the simulation. A multiple reference frame approach was used to treat the impeller rotation. Liquid velocity, gas holdup and solid holdup distributions in the agitated tank were obtained. The effect of operating conditions on gas and solid distributions was investigated. The predicted flow pattern was compared with results in literature. The simulation results indicate that local hydrodynamic behaviors such as velocity, gas and solid holdup distribution, are strongly influenced by operating conditions. Within the scope of our study, increasing gas inlet rate caused liquid circulation to be weakened and was not in favor of gas dispersion. Solid holdup in the upper part of the tank, especially near the wall region decreased. Adding solid loadings resulted in liquid mean velocity near the surface region decreased, gas dispersion and solid suspension becoming worse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Petitti, A. Nasuti, D.L. Marchisio, M. Vanni, G. Baldi, N. Mancini and F. Podenzani, AIChE J., 56, 36 (2010).

    Article  CAS  Google Scholar 

  2. M. Bouaifi, G. Hebrard, D. Bastoul and M. Roustan, Chem. Eng. Process., 40, 97 (2001).

    Article  CAS  Google Scholar 

  3. S. S. Alves, C. J. Maid, J.M. T. Vasconcelos and A. J. Serralheiro, Chem. Eng. J., 89, 109 (2002).

    Article  CAS  Google Scholar 

  4. G. Montante, M. H. Occulti and F. Magelli, PIV Measurements of Mean Flow and Turbulence Modulation in Dilute Solid Liquid Stirred Tanks, 15th Int Symp on Applications of Laser Techniques to Fluid mechanics Lisbon Portugal, July 5-8 (2010).

    Google Scholar 

  5. R. Angst and M. Kraume, Chem. Eng. Sci., 61, 2864 (2006).

    Article  CAS  Google Scholar 

  6. R.N. Sharma and A.A. Shaikh, Chem. Eng. Sci., 58, 2123 (2003).

    Article  CAS  Google Scholar 

  7. Y.Y. Bao, Z.G. Hao, Z.M. Gao, L.T. Shi and J.M. Smith, Chem. Eng. Sci., 60, 2283 (2005).

    Article  CAS  Google Scholar 

  8. N. Dohi, Y. Matsuda, K. Shimizu, K. Minekawa and Y. Kawase, Chem. Eng. Process., 41, 267 (2002).

    Article  CAS  Google Scholar 

  9. J. J. Derksen, AIChE J., 49, 2700 (2003).

    Article  CAS  Google Scholar 

  10. G.R. Kasat, A.R. Khopkar, V.V. Ranade and A.B. Pandit, Chem. Eng. Sci., 63, 3877 (2008).

    Article  CAS  Google Scholar 

  11. A. Tamburini, A. Cipollina, G. Micale, M. Ciofalo and A. Brucato, Chem. Eng. Res. Design, 87, 587 (2009).

    Article  CAS  Google Scholar 

  12. G.L. Lane, M.P. Schwarz and G.M. Evans, Appl. Mathematical Modeling, 26, 223 (2002).

    Article  Google Scholar 

  13. B.N. Murthy, R. S. Ghadge and J.B. Joshi, Chem. Eng. Sci., 62, 7184 (2007).

    Article  CAS  Google Scholar 

  14. R. Panneerselvam, S. Savithri and G.D. Surender, Chem. Eng. Res. Design, 86, 1331 (2008).

    Article  CAS  Google Scholar 

  15. Z.M. Gao, J. M. Smith and H. Müller-Steinhagen, Chem. Eng. Process., 40, 489 (2001).

    Article  CAS  Google Scholar 

  16. Fluent Inc., Gambit Modeling Guide. Lebanon: Fluent Inc., 41 (2006).

    Google Scholar 

  17. Fluent Inc., User’s Manual to FLUENT 6.1. Fluent Inc. Centrera Resource Park, 10 Cavendish Court, Lebanon, USA (2004).

    Google Scholar 

  18. R. Panneerselvam, S. Savithri and G.D. Surender, Ind. Eng. Chem. Res., 48, 1608 (2009).

    Article  CAS  Google Scholar 

  19. L. Schiller and Z. Naumann, Z. Ver. Deutsch. Ing., 77, 318 (1935).

    Google Scholar 

  20. S. E. Elgobashi and M.A. Rizk, Int. J. Multiphase Flow, 15, 119 (1989).

    Article  Google Scholar 

  21. A.M. Lupasteanu, A. I. Galaction and D. Cascaval, Romanian Society of Biological Sciences, 13, 3821 (2008).

    Google Scholar 

  22. N.N. Qi, G.Y. Wu, H. Wang, K. Zhang and H. Zhang, J. Chem. Industry Eng. (China), 61, 2305 (2010).

    CAS  Google Scholar 

  23. D. Wadnerkar, R. Utikar, M.O. Tade and V. K. Pareer, Adv. Power Technol., 23, 445 (2012).

    Article  CAS  Google Scholar 

  24. N.N. Qi, H. Zhang, K. Zhang, G. Xu and Y. P. Yang, Particuology, 11, 317 (2013).

    Article  Google Scholar 

  25. Z. Li, Experimental investigation and numerical simulation of flow characteristics in vessels stirred by disc turbines, Beijing: Beijing University of Chemical Technology (2007).

    Google Scholar 

  26. J. Aubin, N. Le Sauze, J. Bertrand, D.F. Fletcher and C. Xuerer, Experimental Thermal Fluid Sci., 28, 447 (2004).

    Article  CAS  Google Scholar 

  27. R. K. Geisler and A.B. Mersmann, Local velocity distribution and power dissipation rate of suspension in stirred vessels, 6th European Conference on Mixing, Pavia, Italy, 267 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangchao Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Xu, B. Numerical simulation of flow field characteristics in a gas-liquid-solid agitated tank. Korean J. Chem. Eng. 33, 2007–2017 (2016). https://doi.org/10.1007/s11814-016-0105-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0105-7

Keywords

Navigation