Skip to main content

Recent developments in scale-up of microfluidic emulsion generation via parallelization

Abstract

Microfluidics affords precise control over the flow of multiphasic fluids in micron-scale channels. By manipulating the viscous and surface tension forces present in multiphasic flows in microfluidic channels, it is possible to produce highly uniform emulsion droplets one at a time. Monodisperse droplets generated based on microfluidics are useful templates for producing uniform microcapsules and microparticles for encapsulation and delivery of active ingredients as well as living cells. Also, droplet microfluidics have been extensively exploited as a means to enable highthroughput biological screening and assays. Despite the promise droplet-based microfluidics hold for a wide range of applications, low production rate (<<10mL/hour) of emulsion droplets has been a major hindrance to widespread utilization at the industrial and commercial scale. Several reports have recently shown that one way to overcome this challenge and enable mass production of microfluidic droplets is to parallelize droplet generation, by incorporating a large number of droplet generation units (N>>100) and networks of fluid channels that distribute fluid to each of these generators onto a single chip. To parallelize droplet generation and, at the same time, maintain high uniformity of emulsion droplets, several considerations have to be made including the design of channel geometries to ensure even distribution of fluids to each droplet generator, methods for large-scale and uniform fabrication of microchannels, device materials for mechanically robust operation to withstand high-pressure injection, and development of commercially feasible fabrication techniques for three-dimensional microfluidic devices. We highlight some of the recent advances in the mass production of highly uniform microfluidics droplets via parallelization and discuss outstanding issues.

This is a preview of subscription content, access via your institution.

References

  1. Y. Kikuchi, K. Sato, H. Ohki and T. Kaneko, Microvasc. Res., 44, 226 (1992).

    CAS  Article  Google Scholar 

  2. A. Manz, D. J. Harrison, E.M. J. Verpoorte, J.C. Fettinger, A. Paulus, H. Ludi and H. M. Widmer, J. Chromatogr., 593, 253 (1992).

    CAS  Article  Google Scholar 

  3. P. Garstecki, M. J. Fuerstman, H. A. Stone and G. M. Whitesides, Lab Chip, 6, 437 (2006).

    CAS  Article  Google Scholar 

  4. L. Mazutis and A.D. Griffiths, Lab Chip, 12, 1800 (2012).

    CAS  Article  Google Scholar 

  5. X. C. I. Solvas and A. deMello, Chem. Commun., 47, 1936 (2011).

    Article  Google Scholar 

  6. S. H. Jin, H. H. Jeong, B. Lee, S. S. Lee and C. S. Lee, Lab Chip, 15, 3677 (2015).

    CAS  Article  Google Scholar 

  7. Y. Pang, H. Kim, Z. M. Liu and H. A. Stone, Lab Chip, 14, 4029 (2014).

    CAS  Article  Google Scholar 

  8. S. Sugiura, M. Nakajima, S. Iwamoto and M. Seki, Langmuir, 17, 5562 (2001).

    CAS  Article  Google Scholar 

  9. A. S. Utada, A. Fernandez-Nieves, H.A. Stone and D. A. Weitz, Phys. Rev. Lett., 99, 094502 (2007).

    Article  Google Scholar 

  10. M. H. Lee, K. C. Hribar, T. Brugarolas, N. P. Kamat, J. A. Burdick and D. Lee, Adv. Funct. Mater., 22, 131 (2012).

    Article  Google Scholar 

  11. H.N. Joensson and H.A. Svahn, Angew. Chem. Int. Ed., 51, 12176 (2012).

    CAS  Article  Google Scholar 

  12. H. H. Jeong, S. H. Jin, B. J. Lee, T. Kim and C. S. Lee, Lab Chip, 15, 889 (2015).

    CAS  Article  Google Scholar 

  13. S. Duraiswamy and S. A. Khan, Nano Lett., 10, 3757 (2010).

    CAS  Article  Google Scholar 

  14. J. H. Jung, T. J. Park, S.Y. Lee and T. S. Seo, Angew. Chem. Int. Ed., 51, 5634 (2012).

    CAS  Article  Google Scholar 

  15. B. J. Hindson, K.D. Ness, D.A. Masquelier, P. Belgrader, N. J. Heredia, A. J. Makarewicz, I. J. Bright, M.Y. Lucero, A. L. Hiddessen, T.C. Legler, T. K. Kitano, M.R. Hodel, J. F. Petersen, P.W. Wyatt, E.R. Steenblock, P. H. Shah, L. J. Bousse, C.B. Troup, J. C. Mellen, D. K. Wittmann, N. G. Erndt, T. H. Cauley, R.T. Koehler, A. P. So, S. Dube, K. A. Rose, L. Montesclaros, S. L. Wang, D.P. Stumbo, S.P. Hodges, S. Romine, F.P. Milanovich, H. E. White, J. F. Regan, G. A. Karlin-Neumann, C.M. Hindson, S. Saxonov and B.W. Colston, Anal. Chem., 83, 8604 (2011).

    CAS  Article  Google Scholar 

  16. S. Juul, Y. P. Ho, J. Koch, F. F. Andersen, M. Stougaard, K.W. Leong and B.R. Knudsen, ACS Nano, 5, 8305 (2011).

    CAS  Article  Google Scholar 

  17. D. Koziej, C. Floryan, R. A. Sperling, A. J. Ehrlicher, D. Issadore, R. Westervelt and D. A. Weitz, Nanoscale, 5, 5468 (2013).

    CAS  Article  Google Scholar 

  18. J. J. Agresti, E. Antipov, A.R. Abate, K. Ahn, A. C. Rowat, J.C. Baret, M. Marquez, A. M. Klibanov, A.D. Griffiths and D. A. Weitz, Proc. Natl. Acad. Sci. U.S.A., 107, 6550 (2010).

    CAS  Article  Google Scholar 

  19. E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J.M. Rothberg, D. R. Link, N. Perrimon and M. L. Samuels, Proc. Natl. Acad. Sci. U.S.A., 106, 14195 (2009).

    CAS  Article  Google Scholar 

  20. S. L. Sjostrom, Y. P. Bai, M.T. Huang, Z. H. Liu, J. Nielsen, H. N. Joensson and H. A. Svahn, Lab Chip, 14, 806 (2014).

    CAS  Article  Google Scholar 

  21. M. Muluneh, B. Kim, G. Buchsbaum and D. Issadore, Lab Chip, 14, 4638 (2014).

    CAS  Article  Google Scholar 

  22. V. Barbier, H. Willaime, P. Tabeling and F. Jousse, Phys. Rev. E, 74, (2006).

    Google Scholar 

  23. C. Holtze, J. Phys. D Appl. Phys., 46, (2013).

  24. S.M. Joscelyne and G. Tragardh, J. Membrane Sci., 169, 107 (2000).

    CAS  Article  Google Scholar 

  25. G.T. Vladisavljevic, N. Khalid, M.A. Neves, T. Kuroiwa, M. Nakajima, K. Uemura, S. Ichikawa and I. Kobayashi, Adv. Drug. Deliver. Rev., 65, 1626 (2013).

    CAS  Article  Google Scholar 

  26. J. Lim, O. Caen, J. Vrignon, M. Konrad, V. Taly and J. C. Baret, Biomicrofluidics, 9, 034101 (2015).

    Article  Google Scholar 

  27. S. Sahin and K. Schroen, Lab Chip, 15, 2486 (2015).

    CAS  Article  Google Scholar 

  28. T. Nisisako, T. Ando and T. Hatsuzawa, Lab Chip, 12, 3426 (2012).

    CAS  Article  Google Scholar 

  29. M. B. Romanowsky, A.R. Abate, A. Rotem, C. Holtze and D.A. Weitz, Lab Chip, 12, 802 (2012).

    CAS  Article  Google Scholar 

  30. M. Muluneh and D. Issadore, Lab Chip, 13, 4750 (2013).

    CAS  Article  Google Scholar 

  31. H. H. Jeong, V.R. Yelleswarapu, S. Yadavali, D. Issadore and D. Lee, Lab Chip, 15, 4387 (2015).

    CAS  Article  Google Scholar 

  32. D. Bardin, M.R. Kendall, P. A. Dayton and A. P. Lee, Biomicrofluidics, 7, 034112 (2013).

    Article  Google Scholar 

  33. W. Li, J. Greener, D. Voicu and E. Kumacheva, Lab Chip, 9, 2715 (2009).

    CAS  Article  Google Scholar 

  34. D. Conchouso, D. Castro, S.A. Khan and I.G. Foulds, Lab Chip, 14, 3011 (2014).

    CAS  Article  Google Scholar 

  35. G. Tetradis-Meris, D. Rossetti, C. P. de Torres, R. Cao, G. P. Lian and R. Janes, Ind. Eng. Chem. Res., 48, 8881 (2009).

    CAS  Article  Google Scholar 

  36. J.C. McDonald and G.M. Whitesides, Acc. Chem. Res., 35, 491 (2002).

    CAS  Article  Google Scholar 

  37. P.N. Nge, C. I. Rogers and A.T. Woolley, Chem. Rev., 113, 2550 (2013).

    CAS  Article  Google Scholar 

  38. G. S. Fiorini and D.T. Chiu, Biotechniques, 38, 429 (2005).

    CAS  Article  Google Scholar 

  39. T. Nisisako and T. Torii, Lab Chip, 8, 287 (2008).

    CAS  Article  Google Scholar 

  40. Y. Xu, C. X. Wang, L. X. Li, N. Matsumoto, K. Jang, Y.Y. Dong, K. Mawatari, T. Suga and T. Kitamori, Lab Chip, 13, 1048 (2013).

    CAS  Article  Google Scholar 

  41. J. Kotowski, V. Navratil, Z. Slouka and D. Snita, Microelectron. Eng., 110, 441 (2013).

    CAS  Article  Google Scholar 

  42. V. Saarela, M. Haapala, R. Kostiainen, T. Kotiaho and S. Franssila, Lab Chip, 7, 644 (2007).

    CAS  Article  Google Scholar 

  43. H.Y. Zhai, K. S. Yuan, X. Yu, Z. G. Chen, Z. P. Liu and Z. H. Su, Electrophoresis, 36, 2509 (2015).

    CAS  Article  Google Scholar 

  44. V. Saarela, M. Haapala, R. Kostiainen, T. Kotiaho and S. Franssila, J. Micromech. Microeng., 19, 055001 (2009).

    Article  Google Scholar 

  45. K. Kolari, V. Saarela and S. Franssila, J. Micromech. Microeng., 18, (2008).

  46. A. Baram and M. Naftali, J. Micromech. Microeng., 16, 2287 (2006).

    CAS  Article  Google Scholar 

  47. J. Giboz, T. Copponnex and P. Mele, J. Micromech. Microeng., 17, R96 (2007).

    CAS  Article  Google Scholar 

  48. S. Tanzi, M. Matteucci, T. L. Christiansen, S. Friis, M.T. Christensen, J. Garnaes, S. Wilson, J. Kutchinsky and R. Taboryski, Lab Chip, 13, 4784 (2013).

    CAS  Article  Google Scholar 

  49. P. Abgrall, L. N. Low and N.T. Nguyen, Lab Chip, 7, 520 (2007).

    CAS  Article  Google Scholar 

  50. D. J. Guckenberger, T.E. de Groot, A.M.D. Wan, D. J. Beebe and E.W. K. Young, Lab Chip, 15, 2364 (2015).

    CAS  Article  Google Scholar 

  51. M.B.G. Jun, X.Y. Liu, R.E. DeVor and S.G. Kapoor, J. Manuf. Sci. E-T Asme., 128, 893 (2006).

    Article  Google Scholar 

  52. H. Becker and C. Gartner, Electrophoresis, 21, 12 (2000).

    CAS  Article  Google Scholar 

  53. M. Heckele, A. E. Guber and R. Truckenmuller, Microsyst. Technol., 12, 1031 (2006).

    CAS  Article  Google Scholar 

  54. C.W. Tsao and D.L. DeVoe, Microfluid. Nanofluid., 6, 1 (2009).

    CAS  Article  Google Scholar 

  55. E. Roy, J. C. Galas and T. Veres, Lab Chip, 11, 3193 (2011).

    CAS  Article  Google Scholar 

  56. S.C. Yoon, Z. Horita and H. S. Kim, J. Mater. Process. Tech., 201, 32 (2008).

    CAS  Article  Google Scholar 

  57. S.C. Yoon, H. G. Jeong, S. Lee and H. S. Kim, Comp. Mater. Sci., 77, 202 (2013).

    Article  Google Scholar 

  58. C.W. Tsao, L. Hromada, J. Liu, P. Kumar and D. L. DeVoe, Lab Chip, 7, 499 (2007).

    CAS  Article  Google Scholar 

  59. F. Saharil, C. F. Carlborg, T. Haraldsson and W. van der Wijngaart, Lab Chip, 12, 3032 (2012).

    CAS  Article  Google Scholar 

  60. S.K. Sia and G. M. Whitesides, Electrophoresis, 24, 3563 (2003).

    CAS  Article  Google Scholar 

  61. W. H. Grover, A. M. Skelley, C. N. Liu, E.T. Lagally and R.A. Mathies, Sensor. Actuat. B-Chem., 89, 315 (2003).

    CAS  Article  Google Scholar 

  62. J.W. Zhou, A.V. Ellis and N. H. Voelcker, Electrophoresis, 31, 2 (2010).

    CAS  Article  Google Scholar 

  63. B. L. Thompson, Y.W. Ouyang, G.R. M. Duarte, E. Carrilho, S.T. Krauss and J. P. Landers, Nat. Protoc., 10, 875 (2015).

    Article  Google Scholar 

  64. F.P.W. Melchels, J. Feijen and D.W. Grijpma, Biomaterials, 31, 6121 (2010).

    CAS  Article  Google Scholar 

  65. A. Waldbaur, H. Rapp, K. Lange and B. E. Rapp, Anal. Methods, 3, 2681 (2011).

    CAS  Article  Google Scholar 

  66. A. I. Shallan, P. Smejkal, M. Corban, R. M. Guijt and M. C. Breadmore, Anal. Chem., 86, 3124 (2014).

    CAS  Article  Google Scholar 

  67. P. F. O’Neill, A. Ben Azouz, M. Vazquez, J. Liu, S. Marczak, Z. Slouka, H.C. Chang, D. Diamond and D. Brabazon, Biomicrofluidics, 8, 052112 (2014).

    Article  Google Scholar 

  68. A.K. Au, W. Lee and A. Folch, Lab Chip, 14, 1294 (2014).

    CAS  Article  Google Scholar 

  69. G. Comina, A. Suska and D. Filippini, Lab Chip, 14, 424 (2014).

    CAS  Article  Google Scholar 

  70. C.M.B. Ho, S. H. Ng, K.H. H. Li and Y. J. Yoon, Lab Chip, 15, 3627 (2015).

    CAS  Article  Google Scholar 

  71. K.C. Bhargava, B. Thompson and N. Malmstadt, Proc. Natl. Acad. Sci. U. S. A., 111, 15013 (2014).

    CAS  Article  Google Scholar 

  72. T. Femmer, A. Jans, R. Eswein, N. Anwar, M. Moeller, M. Wessling and A. J. Kuehne, ACS Appl. Mater. Interfaces, 7, 12635 (2015).

    CAS  Article  Google Scholar 

  73. T.M. Tran, S. Cater and A.R. Abate, Biomicrofluidics, 8, 016502 (2014).

    Article  Google Scholar 

  74. L.R. Arriaga, E. Amstad and D. A. Weitz, Lab Chip, 15, 3335 (2015).

    CAS  Article  Google Scholar 

  75. S.C. Kim, D. J. Sukovich and A.R. Abate, Lab Chip, 15, 3163 (2015).

    CAS  Article  Google Scholar 

  76. T. Brugarolas, F.Q. Tu and D. Lee, Soft Matter, 9, 9046 (2013).

    CAS  Article  Google Scholar 

  77. S. S. Datta, A. Abbaspourrad, E. Amstad, J. Fan, S. H. Kim, M. Romanowsky, H. C. Shum, B. J. Sun, A. S. Utada, M. Windbergs, S.B. Zhou and D. A. Weitz, Adv. Mater., 26, 2205 (2014).

    CAS  Article  Google Scholar 

  78. C.X. Zhao, Adv. Drug. Deliver. Rev., 65, 1420 (2013).

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daeyeon Lee.

Additional information

Daeyeon Lee Daeyeon Lee received his B.S. in Chemical Engineering from Seoul National University in 2001 and received his Ph.D. in Chemical Engineering at MIT in 2007. After his postdoctoral fellowship at Harvard University, Daeyeon joined the University of Pennsylvania in 2009 and is currently Professor of Chemical and Biomolecular Engineering. Daeyeon’s research interests include structure-property relationship of nanoparticle assemblies, interfacial behavior of Janus particles, and microfluidic fabrication of functional structures. Daeyeon has won numerous awards including the 2010 Victor K. LaMer Award, NSF CAREER Award, 2012 KIChE President Young Investigator Award, 2013 3M Nontenured Faculty Award, 2013 AIChE NSEF Young Investigator Award and 2014 Unilever Award for Young Investigator in Colloid and Surface Science.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jeong, HH., Issadore, D. & Lee, D. Recent developments in scale-up of microfluidic emulsion generation via parallelization. Korean J. Chem. Eng. 33, 1757–1766 (2016). https://doi.org/10.1007/s11814-016-0041-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0041-6

Keywords

  • Microfluidics
  • Emulsions
  • Droplets
  • Scale-up
  • Large-scale Integration
  • Device Fabrication