Skip to main content
Log in

Mechanism of methane hydrate formation in the presence of hollow silica

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Methane hydrates are studied extensively as a prospective medium for storing and transporting natural gas due to their inherent advantages, including high volumetric energy storage density, being environmentally benign and extremely safe method compared to conventional compression and liquefaction methods. Enhanced formation kinetics of methane hydrates has been reported in hollow silica due to the increased gas/liquid contact surface area available for efficient conversion of water to hydrates. This work elucidates the mechanism of methane hydrate formation in light weight hollow silica. Hollow silica-to-water ratio was varied and its effect on the methane hydrate formation/dissociation morphology was observed. There exists a critical hollow silica-to-water ratio (1 : 6) beyond which the hydrates preferentially crystallize on the top of the bed by drawing water from the interstitial pores, whereas below this ratio the hydrate formation occurs within the bed between inter-particular spaces of hollow silica. Due to the very low bulk density, a small fraction of hollow silica was observed to be displaced from the bed during the hydrate formation above the critical hollow silica to water ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Kurumov, G. Olchowy and J. Sengers, Int. J. Therm., 9(1), 73 (1988).

    Article  CAS  Google Scholar 

  2. D. G. Friend, J. F. Ely and H. Ingham, J. Phys. Chem. Reference Data, 18(2), 583 (1989).

    Article  CAS  Google Scholar 

  3. Joint Research Centre (JRC), E.C., Liquefied Natural Gas: Advantages And Drawbacks, in ScienceDaily (2009).

    Google Scholar 

  4. N. Kirillov, Chem. Pet. Eng., 40(7), 401 (2004).

    Article  CAS  Google Scholar 

  5. P. Englezos and J. Lee, Korean J. Chem. Eng., 22(5), 671 (2005).

    Article  CAS  Google Scholar 

  6. Y. Song, et al., Appl. Energy, 145, 265 (2015).

    Article  CAS  Google Scholar 

  7. Z.R. Chong, et al., Appl. Energy, 162, 1633 (2016).

    Google Scholar 

  8. P. Babu, et al., Energy, 85, 261 (2015).

    Article  CAS  Google Scholar 

  9. V. V. Struzhkin, et al., Chem. Reviews, 107(10), 4133 (2007).

    Article  CAS  Google Scholar 

  10. H. P. Veluswamy, R. Kumar and P. Linga, Appl. Energy, 122, 112 (2014).

    Article  CAS  Google Scholar 

  11. P. Babu, R. Kumar and P. Linga, Chem. Eng. Sci., 117, 342 (2014).

    Article  CAS  Google Scholar 

  12. D.W. Davidson, Water: A Comprehensive Treatise, Clathrate hydrates, New York, Plenum Press, 2 (1973).

    Google Scholar 

  13. P. Englezos, Ind. Eng. Chem. Res., 32(7), 1251 (1993).

    Article  CAS  Google Scholar 

  14. E.D. Sloan and C. A. Koh, Clathrate hydrates of natural gases, CRC Press (2008).

    Google Scholar 

  15. R. Boswell and T. S. Collett, Energy Environ. Sci., 4(4), 1206 (2011).

    Article  CAS  Google Scholar 

  16. C.A. Koh, A.K. Sum and E.D. Sloan, J. Natural Gas Sci. Eng., 8, 132 (2012).

    Article  Google Scholar 

  17. G. J. Moridis, et al., SPE Reserv. Eval. Eng., 12(5), 745 (2009).

    Article  CAS  Google Scholar 

  18. H. Kanda, Economic study on natural gas transportation with natural gas hydrate (NGH) pellets, in 23 rd World Gas Conference, Amsterdam (2006).

    Google Scholar 

  19. T. Nogami, et al., Development of natural gas ocean transportation chain by means of natural gas hydrate (NGH), in Fifth International Conference on Gas Hydrates, Trondheim, Norway (2005).

    Google Scholar 

  20. J. Gudmundsson, V. Andersson and O. Levik, Gas storage and transport using hydrates, in Compendio de la Conferencia Mediterránea Marina (1997).

    Google Scholar 

  21. J. S. Gudmundsson, M. Parlaktuna and A. Khokhar, SPE Production and Facilities, 9(1), 69 (1994).

    Article  CAS  Google Scholar 

  22. L.A. Stern, et al., The J. Phys. Chem. B, 105(9), 1756 (2001).

    Article  CAS  Google Scholar 

  23. P. S.R. Prasad and V.D. Chari, J. Natural Gas Sci. Eng., 25, 10 (2015).

    Article  CAS  Google Scholar 

  24. K. Watanabe, S. Imai and Y.H. Mori, Chem. Eng. Sci., 60(17), 4846 (2005).

    Article  CAS  Google Scholar 

  25. Y. Liu, et al., Energy Technol., n/a-n/a (2015).

    Google Scholar 

  26. S. Lee, et al., The J. Phys. Chem. C, 111(12), 4734 (2007).

    Article  CAS  Google Scholar 

  27. J. S. Zhang, S. Lee and J.W. Lee, Ind. Eng. Chem. Res., 46(19), 6353 (2007).

    Article  CAS  Google Scholar 

  28. H. P. Veluswamy, et al., Chem. Eng. Sci., 132, 186 (2015).

    Article  CAS  Google Scholar 

  29. K. Okutani, Y. Kuwabara and Y. H. Mori, Chem. Eng. Sci., 63(1), 183 (2008).

    Article  CAS  Google Scholar 

  30. H. Ganji, et al., Fuel, 86(3), 434 (2007).

    Article  CAS  Google Scholar 

  31. P. Linga, et al., Int. J. Greenhouse Gas Control, 4(4), 630 (2010).

    Article  CAS  Google Scholar 

  32. R. Susilo, Methane storage and transport via structure H clathrate hydrate, UNIVERSITY OF BRITISH COLUMBIA (Vancouver (2008).

    Google Scholar 

  33. R. Ohmura, et al., Energy Fuels, 16(5), 1141 (2002).

    Article  CAS  Google Scholar 

  34. H. P. Veluswamy, et al., Chem. Eng. J., 290, 161 (2016).

    Article  CAS  Google Scholar 

  35. S.-P. Kang, Y. Seo and W. Jang, Energy Fuels, 23(7), 3711 (2009).

    Article  CAS  Google Scholar 

  36. L. Yang, et al., Ind. Eng. Chem. Res., 50(20), 11563 (2011).

    Article  CAS  Google Scholar 

  37. A. Siangsai, et al., Chem. Eng. Sci., 126, 383 (2015).

    Google Scholar 

  38. A. Siangsai, et al., Improved methane hydrate formation rate using treated activated carbon and tetrahydrofuran, 47(4 SPEC. ISS.), 352 (2014).

    CAS  Google Scholar 

  39. A. Siangsai, et al., Roles of activated carbon and tetrahydrofuran on methane hydrate phase equilibrium, 1195 (2014).

    Google Scholar 

  40. B.O. Carter, et al., Langmuir, 26(5), 3186 (2010).

    Article  CAS  Google Scholar 

  41. J. Park, et al., The J. Phys. Chem. C, 119(4), 1690 (2015).

    Article  CAS  Google Scholar 

  42. W. Wang, et al., J. Am. Chem. Soc., 130(35), 11608 (2008).

    Article  CAS  Google Scholar 

  43. J. Pasieka, S. Coulombe and P. Servio, Chem. Eng. Sci., 104, 998 (2013).

    Article  CAS  Google Scholar 

  44. M. Cha, et al., Chem. - An Asian J., 9(1), 261 (2014).

    Article  CAS  Google Scholar 

  45. S. Baek, J. Min and J.W. Lee, RSC Adv., 5(72), 58813 (2015).

    Article  CAS  Google Scholar 

  46. P. S.R. Prasad, Y. Sowjanya and V. Dhanunjana Chari, J. Phys. Chem. C, 118(15), 7759 (2014).

    Article  CAS  Google Scholar 

  47. V.D. Chari, et al., J. Natural Gas Sci. Eng., 11, 7 (2013).

    Article  CAS  Google Scholar 

  48. P. S.R. Prasad, J. Chem. Eng. Data, 60(2), 304 (2015).

    Article  CAS  Google Scholar 

  49. V.D. Chari, et al., Energy Fuels, 27(7), 3679 (2013).

    Article  CAS  Google Scholar 

  50. H. P. Veluswamy, T. Yang and P. Linga, Cryst. Growth Des., 14(4), 1950 (2014).

    Article  CAS  Google Scholar 

  51. T. Nakamura, et al., Chem. Eng. Sci., 58(2), 269 (2003).

    Article  CAS  Google Scholar 

  52. J.G. Beltrán and P. Servio, Cryst. Growth Des., 10(10), 4339 (2010).

    Article  Google Scholar 

  53. P. Babu, et al., Energy Fuels, 27(6), 3364 (2013).

    Article  CAS  Google Scholar 

  54. P. Mekala, et al., Energy Fuels, 28(4), 2708 (2014).

    Article  CAS  Google Scholar 

  55. C. Haligva, et al., Energy Fuels, 24(5), 2947 (2010).

    Article  CAS  Google Scholar 

  56. P. Linga, et al., Energy Fuels, 23(11), 5496 (2009).

    Article  CAS  Google Scholar 

  57. J.-W. Jung and J.C. Santamarina, J. Cryst. Growth, 345(1), 61 (2012).

    Article  CAS  Google Scholar 

  58. Y. Jin, Y. Konno and J. Nagao, Energy Fuels, 26(4), 2242 (2012).

    Article  CAS  Google Scholar 

  59. P. Linga, R. Kumar and P. Englezos, Chem. Eng. Sci., 62(16), 4268 (2007).

    Article  CAS  Google Scholar 

  60. J. Yoslim, P. Linga and P. Englezos, J. Cryst. Growth, 313(1), 68 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen Linga.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veluswamy, H.P., Prasad, P.S.R. & Linga, P. Mechanism of methane hydrate formation in the presence of hollow silica. Korean J. Chem. Eng. 33, 2050–2062 (2016). https://doi.org/10.1007/s11814-016-0039-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0039-0

Keywords

Navigation