Advertisement

Korean Journal of Chemical Engineering

, Volume 33, Issue 7, pp 2050–2062 | Cite as

Mechanism of methane hydrate formation in the presence of hollow silica

  • Hari Prakash Veluswamy
  • Pinnelli Seetha Rama Prasad
  • Praveen LingaEmail author
Energy

Abstract

Methane hydrates are studied extensively as a prospective medium for storing and transporting natural gas due to their inherent advantages, including high volumetric energy storage density, being environmentally benign and extremely safe method compared to conventional compression and liquefaction methods. Enhanced formation kinetics of methane hydrates has been reported in hollow silica due to the increased gas/liquid contact surface area available for efficient conversion of water to hydrates. This work elucidates the mechanism of methane hydrate formation in light weight hollow silica. Hollow silica-to-water ratio was varied and its effect on the methane hydrate formation/dissociation morphology was observed. There exists a critical hollow silica-to-water ratio (1 : 6) beyond which the hydrates preferentially crystallize on the top of the bed by drawing water from the interstitial pores, whereas below this ratio the hydrate formation occurs within the bed between inter-particular spaces of hollow silica. Due to the very low bulk density, a small fraction of hollow silica was observed to be displaced from the bed during the hydrate formation above the critical hollow silica to water ratio.

Keywords

Gas Hydrates Methane Hydrate Morphology Hollow Silica Gas Storage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11814_2016_39_MOESM1_ESM.avi (1.5 mb)
Supplementary material, approximately 1.46 MB.
11814_2016_39_MOESM2_ESM.avi (2 mb)
Supplementary material, approximately 1.98 MB.
11814_2016_39_MOESM3_ESM.avi (1.1 mb)
Supplementary material, approximately 1.07 MB.
11814_2016_39_MOESM4_ESM.pdf (3.7 mb)
Supplementary material, approximately 3.66 MB.

References

  1. 1.
    D. Kurumov, G. Olchowy and J. Sengers, Int. J. Therm., 9(1), 73 (1988).CrossRefGoogle Scholar
  2. 2.
    D. G. Friend, J. F. Ely and H. Ingham, J. Phys. Chem. Reference Data, 18(2), 583 (1989).CrossRefGoogle Scholar
  3. 3.
    Joint Research Centre (JRC), E.C., Liquefied Natural Gas: Advantages And Drawbacks, in ScienceDaily (2009).Google Scholar
  4. 4.
    N. Kirillov, Chem. Pet. Eng., 40(7), 401 (2004).CrossRefGoogle Scholar
  5. 5.
    P. Englezos and J. Lee, Korean J. Chem. Eng., 22(5), 671 (2005).CrossRefGoogle Scholar
  6. 6.
    Y. Song, et al., Appl. Energy, 145, 265 (2015).CrossRefGoogle Scholar
  7. 7.
    Z.R. Chong, et al., Appl. Energy, 162, 1633 (2016).Google Scholar
  8. 8.
    P. Babu, et al., Energy, 85, 261 (2015).CrossRefGoogle Scholar
  9. 9.
    V. V. Struzhkin, et al., Chem. Reviews, 107(10), 4133 (2007).CrossRefGoogle Scholar
  10. 10.
    H. P. Veluswamy, R. Kumar and P. Linga, Appl. Energy, 122, 112 (2014).CrossRefGoogle Scholar
  11. 11.
    P. Babu, R. Kumar and P. Linga, Chem. Eng. Sci., 117, 342 (2014).CrossRefGoogle Scholar
  12. 12.
    D.W. Davidson, Water: A Comprehensive Treatise, Clathrate hydrates, New York, Plenum Press, 2 (1973).Google Scholar
  13. 13.
    P. Englezos, Ind. Eng. Chem. Res., 32(7), 1251 (1993).CrossRefGoogle Scholar
  14. 14.
    E.D. Sloan and C. A. Koh, Clathrate hydrates of natural gases, CRC Press (2008).Google Scholar
  15. 15.
    R. Boswell and T. S. Collett, Energy Environ. Sci., 4(4), 1206 (2011).CrossRefGoogle Scholar
  16. 16.
    C.A. Koh, A.K. Sum and E.D. Sloan, J. Natural Gas Sci. Eng., 8, 132 (2012).CrossRefGoogle Scholar
  17. 17.
    G. J. Moridis, et al., SPE Reserv. Eval. Eng., 12(5), 745 (2009).CrossRefGoogle Scholar
  18. 18.
    H. Kanda, Economic study on natural gas transportation with natural gas hydrate (NGH) pellets, in 23 rd World Gas Conference, Amsterdam (2006).Google Scholar
  19. 19.
    T. Nogami, et al., Development of natural gas ocean transportation chain by means of natural gas hydrate (NGH), in Fifth International Conference on Gas Hydrates, Trondheim, Norway (2005).Google Scholar
  20. 20.
    J. Gudmundsson, V. Andersson and O. Levik, Gas storage and transport using hydrates, in Compendio de la Conferencia Mediterránea Marina (1997).Google Scholar
  21. 21.
    J. S. Gudmundsson, M. Parlaktuna and A. Khokhar, SPE Production and Facilities, 9(1), 69 (1994).CrossRefGoogle Scholar
  22. 22.
    L.A. Stern, et al., The J. Phys. Chem. B, 105(9), 1756 (2001).CrossRefGoogle Scholar
  23. 23.
    P. S.R. Prasad and V.D. Chari, J. Natural Gas Sci. Eng., 25, 10 (2015).CrossRefGoogle Scholar
  24. 24.
    K. Watanabe, S. Imai and Y.H. Mori, Chem. Eng. Sci., 60(17), 4846 (2005).CrossRefGoogle Scholar
  25. 25.
    Y. Liu, et al., Energy Technol., n/a-n/a (2015).Google Scholar
  26. 26.
    S. Lee, et al., The J. Phys. Chem. C, 111(12), 4734 (2007).CrossRefGoogle Scholar
  27. 27.
    J. S. Zhang, S. Lee and J.W. Lee, Ind. Eng. Chem. Res., 46(19), 6353 (2007).CrossRefGoogle Scholar
  28. 28.
    H. P. Veluswamy, et al., Chem. Eng. Sci., 132, 186 (2015).CrossRefGoogle Scholar
  29. 29.
    K. Okutani, Y. Kuwabara and Y. H. Mori, Chem. Eng. Sci., 63(1), 183 (2008).CrossRefGoogle Scholar
  30. 30.
    H. Ganji, et al., Fuel, 86(3), 434 (2007).CrossRefGoogle Scholar
  31. 31.
    P. Linga, et al., Int. J. Greenhouse Gas Control, 4(4), 630 (2010).CrossRefGoogle Scholar
  32. 32.
    R. Susilo, Methane storage and transport via structure H clathrate hydrate, UNIVERSITY OF BRITISH COLUMBIA (Vancouver (2008).Google Scholar
  33. 33.
    R. Ohmura, et al., Energy Fuels, 16(5), 1141 (2002).CrossRefGoogle Scholar
  34. 34.
    H. P. Veluswamy, et al., Chem. Eng. J., 290, 161 (2016).CrossRefGoogle Scholar
  35. 35.
    S.-P. Kang, Y. Seo and W. Jang, Energy Fuels, 23(7), 3711 (2009).CrossRefGoogle Scholar
  36. 36.
    L. Yang, et al., Ind. Eng. Chem. Res., 50(20), 11563 (2011).CrossRefGoogle Scholar
  37. 37.
    A. Siangsai, et al., Chem. Eng. Sci., 126, 383 (2015).Google Scholar
  38. 38.
    A. Siangsai, et al., Improved methane hydrate formation rate using treated activated carbon and tetrahydrofuran, 47(4 SPEC. ISS.), 352 (2014).Google Scholar
  39. 39.
    A. Siangsai, et al., Roles of activated carbon and tetrahydrofuran on methane hydrate phase equilibrium, 1195 (2014).Google Scholar
  40. 40.
    B.O. Carter, et al., Langmuir, 26(5), 3186 (2010).CrossRefGoogle Scholar
  41. 41.
    J. Park, et al., The J. Phys. Chem. C, 119(4), 1690 (2015).CrossRefGoogle Scholar
  42. 42.
    W. Wang, et al., J. Am. Chem. Soc., 130(35), 11608 (2008).CrossRefGoogle Scholar
  43. 43.
    J. Pasieka, S. Coulombe and P. Servio, Chem. Eng. Sci., 104, 998 (2013).CrossRefGoogle Scholar
  44. 44.
    M. Cha, et al., Chem. - An Asian J., 9(1), 261 (2014).CrossRefGoogle Scholar
  45. 45.
    S. Baek, J. Min and J.W. Lee, RSC Adv., 5(72), 58813 (2015).CrossRefGoogle Scholar
  46. 46.
    P. S.R. Prasad, Y. Sowjanya and V. Dhanunjana Chari, J. Phys. Chem. C, 118(15), 7759 (2014).CrossRefGoogle Scholar
  47. 47.
    V.D. Chari, et al., J. Natural Gas Sci. Eng., 11, 7 (2013).CrossRefGoogle Scholar
  48. 48.
    P. S.R. Prasad, J. Chem. Eng. Data, 60(2), 304 (2015).CrossRefGoogle Scholar
  49. 49.
    V.D. Chari, et al., Energy Fuels, 27(7), 3679 (2013).CrossRefGoogle Scholar
  50. 50.
    H. P. Veluswamy, T. Yang and P. Linga, Cryst. Growth Des., 14(4), 1950 (2014).CrossRefGoogle Scholar
  51. 51.
    T. Nakamura, et al., Chem. Eng. Sci., 58(2), 269 (2003).CrossRefGoogle Scholar
  52. 52.
    J.G. Beltrán and P. Servio, Cryst. Growth Des., 10(10), 4339 (2010).CrossRefGoogle Scholar
  53. 53.
    P. Babu, et al., Energy Fuels, 27(6), 3364 (2013).CrossRefGoogle Scholar
  54. 54.
    P. Mekala, et al., Energy Fuels, 28(4), 2708 (2014).CrossRefGoogle Scholar
  55. 55.
    C. Haligva, et al., Energy Fuels, 24(5), 2947 (2010).CrossRefGoogle Scholar
  56. 56.
    P. Linga, et al., Energy Fuels, 23(11), 5496 (2009).CrossRefGoogle Scholar
  57. 57.
    J.-W. Jung and J.C. Santamarina, J. Cryst. Growth, 345(1), 61 (2012).CrossRefGoogle Scholar
  58. 58.
    Y. Jin, Y. Konno and J. Nagao, Energy Fuels, 26(4), 2242 (2012).CrossRefGoogle Scholar
  59. 59.
    P. Linga, R. Kumar and P. Englezos, Chem. Eng. Sci., 62(16), 4268 (2007).CrossRefGoogle Scholar
  60. 60.
    J. Yoslim, P. Linga and P. Englezos, J. Cryst. Growth, 313(1), 68 (2010).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2016

Authors and Affiliations

  • Hari Prakash Veluswamy
    • 1
  • Pinnelli Seetha Rama Prasad
    • 2
  • Praveen Linga
    • 1
    Email author
  1. 1.Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingaporeSingapore
  2. 2.Gas Hydrate DivisionNational Geophysical Research Institute, Council for Scientific and Industrial ResearchHyderabadIndia

Personalised recommendations