Production of polyhydroxyalkanoates by batch and fed-batch cultivations of Bacillus megaterium from acid-treated red algae

Abstract

Polyhydroxyalkanoates (PHAs) are linear polyesters synthesized by microbial fermentation of various substrates. PHAs are accumulated in microbial cells in order to store carbon and energy for future use. We used acid-pre-treated red alga (Gelidium amansii) as a cheap, abundant carbon source to produce PHA via batch and fed-batch cultivation of Bacillus megaterium KCTC 2194. After acid treatment of 10% (w/v) G. amansii, 25.5 g/L galactose, 3.6 g/L glucose, 6 g/L 5-HMF, and 1.05 g/L levulinic acid were formed. In batch culture at pH 7, the dry cell weight (DCW) and PHA content increased to 5.5 g/L and 51.4%, respectively. The cell concentration was enhanced by fed-batch cultivation using two feeding strategies: pH-stat and intermittent feeding. When the pH-stat feeding strategy was employed to add concentrated hydrolysate to the fermentor, DCW increased to 8.2 g/L, with 53.2% PHA content. When concentrated hydrolysate was fed using the intermittent feeding strategy, higher DCW (10.1 g/L) was obtained, along with a slight increase of PHA content to 54.5%. This study demonstrates that red algae could be used after simple acid treatment, to produce PHA without steps for enzymatic hydrolysis and inhibitor removal.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    P. Suriyamongkol, R. Weselake, S. Narine, M. Moloney and S. Shah, Biotechnol Adv., 25, 148 (2007).

    CAS  Article  Google Scholar 

  2. 2.

    H.R. Ghatak, Renewable and Sustainable Energy Reviews., 15, 4042 (2011).

    CAS  Article  Google Scholar 

  3. 3.

    D. Pleissner, W.C. Lam, W. Han, K.Y. Lau, L.C. Cheung, M.W. Lee, H.M. Lei, K.Y. Lo, W.Y. Ng, Z. Sun, M. Melikoglu and C. S. K. Lin, BioMed Res. Int., 2014, 819474 (2014).

    Article  Google Scholar 

  4. 4.

    J. H. Yun, S. S. Sawant and B. S. Kim, Korean J. Chem. Eng., 30, 2223 (2013).

    CAS  Article  Google Scholar 

  5. 5.

    T.Y. Huang, K. J. Duan, S.Y. Huang and C.W. Chen, J. Ind. Microbiol. Biotechnol., 33, 701 (2006).

    CAS  Article  Google Scholar 

  6. 6.

    S. Obruca, I. Marova, S. Melusova and L. Mravcova, Annals of Microbiol., 61, 947 (2011).

    CAS  Article  Google Scholar 

  7. 7.

    M. K. Gouda, A. E. Swellam and S. H. Omar, Microbiol. Res., 156, 201 (2001).

    CAS  Article  Google Scholar 

  8. 8.

    K. Lüning and S. Pang, J. Appl. Phycol., 15, 115 (2003).

    Article  Google Scholar 

  9. 9.

    B.H. Buck and C.M. Buchholz, J. Appl. Phycol., 16, 355 (2004).

    Article  Google Scholar 

  10. 10.

    J. H. Park, J.Y. Hong, H. C. Jang, S. G. Oh, S. H. Kim, J. J. Yoon and Y. J. Kim, Bioresour. Technol., 108, 83 (2012).

    CAS  Article  Google Scholar 

  11. 11.

    C. H. Ra, G.T. Jeong, M. K. Shin and S. K. Kim, Bioresour. Technol., 140, 421 (2013).

    CAS  Article  Google Scholar 

  12. 12.

    G. Sathiyanarayanan, G. S. Kiran, J. Selvin and G. Saibaba, Int. J. Biol. Macromol., 60, 253 (2013).

    CAS  Article  Google Scholar 

  13. 13.

    J. Quinn, J. Peden and R. Dick, Appl. Microbiol. Biotechnol., 31, 283 (1989).

    CAS  Google Scholar 

  14. 14.

    S.Y. Lee, J. Choi and H.H. Wong, Int. J. Biol. Macromol., 25, 31 (1999).

    CAS  Article  Google Scholar 

  15. 15.

    S. P. Valappil, S. K. Misra, A.R. Boccaccini, T. Keshavarz, C. Bucke and I. Roy, J. Biotechnol., 132, 251 (2007).

    CAS  Article  Google Scholar 

  16. 16.

    S. Vishnuvardhan Reddy, M. Thirumala and S. Mahmood, World J. Microbiol. Biotechnol., 25, 391 (2009).

    CAS  Article  Google Scholar 

  17. 17.

    R. Jeffcoat, Biochem. Soc. Trans., 17, 1137 (1989).

    CAS  Article  Google Scholar 

  18. 18.

    B. Alkotaini, E. Sathiyamoorthi and B. S. Kim, Biotechnol. Bioproc. Eng., 20, 856 (2015).

    CAS  Article  Google Scholar 

  19. 19.

    B.H.H. Eva Palmqvist, Bioresour. Technol., 74, 25 (2000).

    Article  Google Scholar 

  20. 20.

    S. Labuzek and I. Radecka, J. Appl. Microbiol., 90, 353 (2001).

    CAS  Article  Google Scholar 

  21. 21.

    X. Gao, X.X. Yuan, Z.Y. Shi, Y.Y. Guo, X.W. Shen, J.C. Chen, Q. Wu and G.-Q. Chen, Microb. Cell Fact., 11, 130 (2012).

    CAS  Article  Google Scholar 

  22. 22.

    J. López, J. Naranjo, J. Higuita, M. Cubitto, C. Cardona and M. Villar, Biotechnol. Bioproc. Eng., 17, 250 (2012).

    Article  Google Scholar 

  23. 23.

    Z. Sun, J. A. Ramsay, M. Guay and B. Ramsay, J. Biotechnol., 132, 280 (2007).

    CAS  Article  Google Scholar 

  24. 24.

    X. J. Jiang, Z. Sun, J.A. Ramsay and B.A. Ramsay, AMB Express., 3, 50 (2013).

    Article  Google Scholar 

  25. 25.

    P. Kanjanachumpol, S. Kulpreecha, V. Tolieng and N. Thongchul, Bioproc. Biosyst. Eng., 36, 1463 (2013).

    CAS  Article  Google Scholar 

  26. 26.

    S.R. Pandian, V. Deepak, K. Kalishwaralal, N. Rameshkumar, M. Jeyaraj and S. Gurunathan, Bioresour. Technol., 101, 705 (2010).

    Article  Google Scholar 

  27. 27.

    Q. Wu, H. Huang, G. Hu, J. Chen, K.P. Ho and G.Q. Chen, Anton. Van Leeuw., 80, 111 (2001).

    CAS  Article  Google Scholar 

  28. 28.

    G. Singh, A. Kumari, A. Mittal, A. Yadav and N. K. Aggarwal, BioMed Res. Int., 2013, 952641 (2013).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Beom Soo Kim.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alkotaini, B., Koo, H. & Kim, B.S. Production of polyhydroxyalkanoates by batch and fed-batch cultivations of Bacillus megaterium from acid-treated red algae. Korean J. Chem. Eng. 33, 1669–1673 (2016). https://doi.org/10.1007/s11814-015-0293-6

Download citation

Keywords

  • Polyhydroxyalkanoates
  • PHA
  • Red Algae
  • Gelidium amansii
  • Bacillus megaterium
  • Fed-batch Cultivation