Skip to main content
Log in

Using response surface methodology to optimize ultrasound-assisted oxidative desulfurization

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Latest strict environmental regulations have restricted the sulfur content of diesel fuels; therefore, deep desulfurization of fuels is required. Ultrasound-assisted oxidative desulfurization (UAOD) is an alternative for conventional desulfurization methods which can remove sulfur compounds from fuels under mild process conditions. In this study, UAOD of gasoil using tungstophosphoric acid catalyst and tetraoctylammonium bromide as a phase transfer agent in the presence of hydrogen peroxide as an oxidant was optimized. The optimal design of experiments was generated based on central composite face-centered design of Response surface methodology (RSM) to study effects of four process variables such as oxidant volume, mass of catalyst, mass of phase transfer agent and the ultrasonic wave amplitude on the sulfur conversion of gasoil. In addition, a predictive model of sulfur conversion was obtained based on RSM. The optimal values of process variables were evaluated to be 21.96 mL of oxidant, 1 gr of catalyst and 0.1 gr of phase transfer agent to achieve the maximum sulfur conversion of 95.92%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Mei, B.W. Mei and T. F. Yen, Fuel, 82(4), 405 (2003), DOI: 10.1016/S0016-2361(02)00318-6.

    Article  CAS  Google Scholar 

  2. H. Farag, J Colloid Interface Sci., 384(1), 219 (2010), DOI:10.1016/j.jcis.2010.04.022.

    Article  Google Scholar 

  3. G. Zhang, F. Yu and R. Wang, Pet. Coal, 51(3), 196 (2009).

    Google Scholar 

  4. S. Mondal, Y. Hangun-Balkir, L. Alexandrova, D. Link, B. Howard, P. Zandhuis, A. Cugini, C. P. Horwitz and T. J. Collins, Catal. Today, 116, 554 (2006), DOI:10.1016/j.cattod.2006.06.025.

    Article  CAS  Google Scholar 

  5. K. Liu, C. Song and V. Subraman, Hydrogen and Syngas Production and Purification Technologies, John Wiley & Sons, New Jersey (2009).

    Book  Google Scholar 

  6. S. Otsuki, T. Nonaka, N. Takashima, W. Qian, A. Ishihara, T. Imai and T. Kabe, Energy Fuels, 14(6), 1232 (2000), DOI:10.1021/ef000096i.

    Article  CAS  Google Scholar 

  7. M. B. Smith, Organic Synthesis, Third Ed., Academic Press, Elsevier Inc. (2011).

    Google Scholar 

  8. J. M. Campos-Martin, M. C. Capel-Sanchez, P. Perez-Presas and J. L.G. Fierro, J. Chem. Technol. Biotechnol., 85(7), 879 (2010).

    Article  CAS  Google Scholar 

  9. R. Sundararaman, X. Ma and C. Song, Ind. Eng. Chem. Res., 49(12), 5561 (2010), DOI:10.1021/ie901812r.

    Article  CAS  Google Scholar 

  10. R. Javadli and A. d. Klerk, Appl. Petrochem. Res., 1, 3 (2012), DOI: 10.1007/s13203-012-0006-6.

    Article  CAS  Google Scholar 

  11. D. Wang, E.W. Qian, H. Amano, K. Okata, A. Ishahara and T. Kabe, Appl. Catal., A, 253(1), 91 (2003), DOI:10.1016/S0926-860X(03)00528-3.

    Article  CAS  Google Scholar 

  12. R. Javadli, Autoxidation for Pre-refining of Oil Sands, in: Chemical and Materials Engineering Department, University of Alberta, Canada (2011).

    Google Scholar 

  13. B.R. Fox, Investigations into the oxidative desulfurization activity in a film-shear reactor, the source of enhanced reactivity, and other potential applications, in: Department of Chemistry, University of Oregon, the US (2011).

    Google Scholar 

  14. X. Xu, J. A. Moulijn, E. Ito, R. Wagemans and M. Makkee, Chem. Sus. Chem., 1(10), 817 (2008), DOI:10.1002/cssc.200800109.

    Article  CAS  Google Scholar 

  15. M. Wan and T. Yen, Appl. Catal., A, 319(1), 237 (2007), DOI:10. 1016/j.apcata.2006.12.008.

    Article  CAS  Google Scholar 

  16. T. F. Yen, H. Mei and S.H. Lu, in, US Patent, US6402939 B1 (2002).

    Google Scholar 

  17. A. Deshpande, A. Bassi and A. Prakash, Energy Fuels, 19(1), 28 (2005), DOI:10.1021/ef0340965.

    Article  CAS  Google Scholar 

  18. P.A. Mello, F. A. Duarte, M. A.G. Nunes, M. S. Alencar, E. M. Moreira, M. Korn, V. L. Dressler and É. M. M. Flores, Ultrason. Sonochem., 16(6), 732 (2009), DOI:10.1016/j.ultsonch.2009.03.002.

    Article  CAS  Google Scholar 

  19. Z. Wu and B. Ondruschka, Ultrason. Sonochem., 17(6), 1027 (2010), DOI:10.1016/j.ultsonch.2009.11.005.

    Article  CAS  Google Scholar 

  20. T. Chen, Y. Shen, W. Lee, C. Lin and M. Wan, J. Cleaner Prod., 18(18), 1850 (2010), DOI:10.1016/j.jclepro.2010.07.019.

    Article  CAS  Google Scholar 

  21. M. Wan, L. C. Biel, M. Lu, R. Leon and S. Arco, Desalin. Water Treat., 47(1-3), 96 (2012), DOI:10.1080/19443994.2012.696802.

    Article  CAS  Google Scholar 

  22. F.A. Duarte, P.A. Mello, C.A. Bizzi, M.A.G. Nunes, E.M. Moreira, M. S. Alencar, H. N. Motta, V. L. Dressler and É. M. Flores, Fuel, 90(6), 2158 (2011), DOI:10.1016/j.fuel.2011.01.030.

    Article  CAS  Google Scholar 

  23. Q. Tang, S. Lin, Y. Cheng, S. Liu and J. Xiong, Ultrason. Sonochem., 20(5), 1168 (2013), DOI:10.1016/j.ultsonch.2013.02.002.

    Article  CAS  Google Scholar 

  24. N. Jose, S. Sengupta and J. K. Basu, Fuel, 90(2), 626 (2011), DOI: 10.1016/j.fuel.2010.09.026.

    Article  CAS  Google Scholar 

  25. S. Zahedi Abghari, S. Shokri, B. Baloochi, M. Ahmadi Marvast, S. Ghanizadeh and A. Behroozi, Korean J. Chem. Eng., 28(1), 93 (2011), DOI:10.1007/s11814-010-0325-1.

    Article  Google Scholar 

  26. Z. Shayegan, M. Razzaghi, A. Niaei, D. Salari, M T. Shervani Tabar and A. Noshad Akbari, Korean J. Chem. Eng., 30(9), 1751 (2013), DOI:10.1007/s11814-013-0097-5.

    Article  CAS  Google Scholar 

  27. K. Hinkelmann, O. Kempthorne, Advanced Experimental Design in: Design and Analysis of Experiments, Wiley, Hoboken, New Jersey (2005).

    Book  Google Scholar 

  28. E. Narimani and S. Shahhoseini, Appl. Therm. Eng., 31(2-3), 188 (2011), DOI:10.1016/j.applthermaleng.2010.08.031.

    Article  Google Scholar 

  29. S. Ghosh and C. R. Rao, in: Handbook of Statistics, Elsevier Science Publishing, Amsterdam (1996).

    Google Scholar 

  30. S.D.M. Hasan, D.N.C. Melo and R. M. Filho, Chem. Eng. Process., 44(3), 335 (2005), DOI:10.1016/j.cep.2004.05.007.

    Article  CAS  Google Scholar 

  31. N. Bradley, Response Surface Methodology, in: Department of Mathematical Sciences, Indiana University of South Bend, the US (2007).

    Google Scholar 

  32. W. Daoud, T. Ebadand and A. Fahimifar, Korean J. Chem. Eng., 32(6), 1119 (2015), DOI:10.1007/s11814-014-0337-3.

    Article  CAS  Google Scholar 

  33. R.H. Myers, D.C. Montgomery and C.M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, Third Ed., John Wiley & Sons, Hoboken, New Jersey (2009).

    Google Scholar 

  34. L. Kavoshi, M. S. Hatamipour and A. Rahimi, Chem. Eng. Technol., 36(3), 500 (2013), DOI:10.1002/ceat.201200304.

    Article  CAS  Google Scholar 

  35. J. Zhao, B. Jin and Z. Zhong, J. Hazard. Mater., 147(1-2), 363 (2007), DOI:10.1016/j.jhazmat.2007.01.046.

    Article  CAS  Google Scholar 

  36. F. Mahdizadeh, M. Eskandarian, J. Zabarjadi, A. Ehsani and A. Afshar, Korean J. Chem. Eng., 31(1), 74 (2014), DOI:10.1007/s11814-013-0174-9.

    Article  CAS  Google Scholar 

  37. G. Kafuku, K.T. Tan, K.T. Lee and M. Mbarawa, Chem. Eng. Technol., 34(11), 1827 (2011), DOI:10.1002/ceat.201100204.

    Article  CAS  Google Scholar 

  38. V. Cheynier, M. Feinberg, C. Chararas and C. Ducauze, Appl. Environ. Microbiol., 45(2), 634 (1983).

    CAS  Google Scholar 

  39. S. Young Chun, S. Woo An, S. Jin Lee, J. Tae Kim and S. Woong Chang, Korean J. Chem. Eng., 31(6), 994 (2014), DOI:10.1007/ s11814-014-0027-1.

    Article  CAS  Google Scholar 

  40. L. Huang, Z. Lu, Y. Yuan, F. Lu and X. Bie, J. Ind. Microbiol. Biotechnol., 33(1), 55 (2006), DOI:10.1007/s10295-005-0041-8.

    Article  CAS  Google Scholar 

  41. E. Narimani and J. Alaei Kadijani, Chem. Eng. Technol., 37(2), 229 (2014), DOI:10.1002/ceat.201300123.

    Article  CAS  Google Scholar 

  42. E. Narimani and J. Alaei Kadijani, Pet. Coal, 55(4), 330 (2013).

    Google Scholar 

  43. J.M. Löning, C. Horst and U. Hoffmann, Ultrason. Sonochem., 9(3), 169 (2002), DOI:10.1016/S1350-4177(01)00113-4.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elhameh Narimani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadijani, J.A., Narimani, E. & Kadijani, H.A. Using response surface methodology to optimize ultrasound-assisted oxidative desulfurization. Korean J. Chem. Eng. 33, 1286–1295 (2016). https://doi.org/10.1007/s11814-015-0276-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0276-7

Keywords

Navigation