Skip to main content
Log in

Characterization of high-alumina coal fly ash based silicate material and its adsorption performance to CO2

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Silicate material prepared from high-alumina coal fly ash (HACFA) was characterized by using XRD, SEM, FTIR spectroscopy, TGA-DSC, and elemental analysis. These spectral results show that the silicate material is mainly composed of eight elements—O, C, Si, Ca, Na, Mg, Al, and Fe, which exist as the formations of Ca2+, Na+, Mg2+, Al3+, Fe3+, SiO 2−3 , and COO 2−3 , and some adsorbed water and crystal water are determined in the silicate material. The material with surface area of 117.12m2/g shows a faveolate structure, and a pore size distribution of silicate material is calculated at 11.01 nm from the nitrogen desorption isotherm using the BJH model. When the material was used for CO2 adsorption at T=323.15 K and flow rate=95mL/min with 15.79% (vol) CO2, a dynamic adsorption capacity of CO2 on the surface of silicate material was found at 8.67mg/g and the adsorption values decreased weakly after seventeen recycling times. The investigation of dynamic adsorption behavior shows that the silicate material presents similar adsorption properties with commercial active carbon and stronger adsorption properties than commercial diatomite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Hofmann, J. H. Butler and P. P. Tans, Atmos. Environ., 43, 2084 (2009).

    Article  CAS  Google Scholar 

  2. J. C. M. Pires, F. G. Martins, M. C. M. Alvim-Ferraz and M. Simões, Chem. Eng. Res. Des., 89, 1446 (2011).

    Article  CAS  Google Scholar 

  3. H. Li, J. P. Jakobsen, Ø. Wilhelmsen and J. Yan, Appl. Energy, 88, 3567 (2011).

    Article  CAS  Google Scholar 

  4. A. Nuchitprasittichai and S. Cremaschi, Int. J. Greenh. Gas Con., 13, 34 (2013).

    Article  CAS  Google Scholar 

  5. N. Hiyoshi, K. Yogo and T. Yashima, Micropor. Mesopor. Mater., 84, 357 (2005).

    Article  CAS  Google Scholar 

  6. L. S. Tan, A. M. Shariff, K. K. Lau and M. A. Bustam, J. Ind. Eng. Chem., 18, 1874 (2012).

    Article  CAS  Google Scholar 

  7. J. K. Adewole, A. L. Ahmad, S. Ismail and C. P. Leo, Int. J. Greenh. Gas Con., 17, 46 (2013).

    Article  CAS  Google Scholar 

  8. D. Berstad, R. Anantharaman and P. Neksa, Int. J. Refrig., 36, 1403 (2013).

    Article  CAS  Google Scholar 

  9. J. N. Knudsen, J. N. Jensen, P. J. Vilhelmsen and O. Biede, Energy Procedia, 1, 783 (2009).

    Article  CAS  Google Scholar 

  10. R. Bounaceur, N. Lape, D. Roizard, C. Vallieres and E. Favre, Energy, 31, 2556 (2006).

    Article  CAS  Google Scholar 

  11. A. Hart and N. Gnanendran, Energy Procedia, 1, 697 (2009).

    Article  CAS  Google Scholar 

  12. B. ZareNezhad and N. Hosseinpour, Energy Convers. Manage., 50, 1491 (2009).

    Article  CAS  Google Scholar 

  13. V. P. Mulgundmath, R. A. Jones, F. H. Tezel and J. Thibault, Sep. Pur. Technol., 85, 17 (2012).

    Article  CAS  Google Scholar 

  14. S. Himeno, T. Komatsu and S. Fujita, J. Chem. Eng. Data, 50, 369 (2005).

    Article  CAS  Google Scholar 

  15. A. A. Olajire, Energy, 35, 2610 (2010).

    Article  CAS  Google Scholar 

  16. M. G. Plaza, C. Pevida, B. Arias, J. Fermoso, M. D. Casal and C. F. Martín, Fuel, 88, 2442 (2009).

    Article  CAS  Google Scholar 

  17. N. A. Rashidi, S. Yusup and B. H. Hameed, Energy, 61, 440 (2013).

    Article  CAS  Google Scholar 

  18. R. V. Siriwardane, M. S. Shen and E. P. Fisher, Energy Fuel, 19, 1153 (2005).

    Article  CAS  Google Scholar 

  19. I. Majchrzak-Kuceba and W. Nowak, Thermochim. Acta, 437, 67 (2005).

    Article  CAS  Google Scholar 

  20. C. Stewart and M. Hessami, Energy Convers. Manage., 46, 403 (2005).

    Article  CAS  Google Scholar 

  21. Z. T. Yao, M. S. Xia, P. K. Sarker and T. Chen, Fuel, 120, 74 (2014).

    Article  CAS  Google Scholar 

  22. M. Ilic, C. Cheeseman, C. Sollars and J. Knight, Fuel, 82, 331 (2003).

    Article  CAS  Google Scholar 

  23. V. Manoharan, I. A. M. Yunusa, P. Loganathan, R. Lawrie, C. G. Skilbeck and M. D. Burchett, Fuel, 89, 3498 (2010).

    Article  CAS  Google Scholar 

  24. H. Lee, H. S. Ha, C. H. Lee, Y. B. Lee and P. J. Kim, Bioresour. Technol., 97, 1490 (2006).

    Article  CAS  Google Scholar 

  25. M. Erol, S. Kucukbayrak and A. Ersoy-Mericboyu, Fuel, 87, 1334 (2008).

    Article  CAS  Google Scholar 

  26. M. Erol, S. Kucukbayrak and A. Ersoy-Mericboyu, J. Hazard. Mater., 153, 418 (2008).

    Article  CAS  Google Scholar 

  27. J. Fang, G. Qin, W. Wei and X. Zhao, Sep. Pur. Technol., 80, 585 (2011).

    Article  CAS  Google Scholar 

  28. D. Jain, C. Khatri and A. Rani, Fuel Process. Technol., 91, 1015 (2010).

    Article  CAS  Google Scholar 

  29. E. Saputra, S. Muhammad, H. Q. Sun, H. M. Anga, M. O. Tadéa and S. B. Wang, Catal Today, 190, 68 (2012).

    Article  CAS  Google Scholar 

  30. X. P. Xuan, C. T. Yue, S. Y. Li and Q. Yao, Fuel, 82, 575 (2003).

    Article  CAS  Google Scholar 

  31. S. B. Wang and H. W. Wu, J. Hazard Mater., 136, 482 (2006).

    Article  CAS  Google Scholar 

  32. Y. Li, F. Zhang and F. Xiu, Sci. Tot. Environ., 407, 5780 (2009).

    Article  CAS  Google Scholar 

  33. M. Niewiadomski, J. Hupka, R. Bokotko and J. D. Miller, Fuel, 78, 161 (1999).

    Article  CAS  Google Scholar 

  34. M. Chareonpanich, T. Namto, P. Kongkachuichay and J. Limtrakul, Fuel Process. Technol., 85, 1623 (2004).

    Article  CAS  Google Scholar 

  35. Z. T. Yao, Y. Ye and M. S. Xia, Environ. Prog. Sustain., 32, 790 (2013).

    Article  CAS  Google Scholar 

  36. D. Wu, B. Zhang, L. Yan, H. Kong and X. Wang, Int. J. Miner. Process., 80, 266 (2006).

    Article  CAS  Google Scholar 

  37. A. Hernandez-Exposito, J. M. Chimenos, A. I. Fernandez, O. Font, X. Querol, P. Coca and F. Garcia Pena, Chem. Eng. J., 118, 69 (2006).

    Article  CAS  Google Scholar 

  38. F. Arroyo Torralvo and C. Fernández-Pereira, Miner. Eng., 24, 35 (2011).

    Article  Google Scholar 

  39. A. Shemi, R. N. Mpana, S. Ndlovu, L. D. van Dyk, V. Sibanda and L. Seepe, Miner. Eng., 34, 30 (2012).

    Article  CAS  Google Scholar 

  40. S. Dinda, Sep. Pur. Technol., 109, 64 (2013).

    Article  CAS  Google Scholar 

  41. J. M. Sun, Z. J. Zhang, G. Chen, S. Y. Yan, Q. Z. Huo and L. C. Wu, The method of active calcium silicate in the produce process of Al2O3 using high-alumina fly ash. C N. Patent. CN102249253A (2011).

    Google Scholar 

  42. Z. J. Zhang, J. M. Sun, H. F. Cao, X. Y. Zhang, Y. W. Wang and Q. Yao, A synthetical method of calcium silicate powder using highalumina fly ash. CN. Patent. CN101591023 (2008).

    Google Scholar 

  43. R. R. Yadav, S. N. Mudliarb, A. Y. Shekh, A. B. Fulke, S. S. Devi, K. Krishnamurthi, A. Juwarkar and T. Chakrabarti, Process Biochem., 47, 585 (2012).

    Article  CAS  Google Scholar 

  44. Y. Mogami, S. Yamazaki, S. Matsuno, K. Matsui, Y. Noda and K. Takegoshi, Cement Concrete Res., 66, 115 (2014).

    Article  CAS  Google Scholar 

  45. Y. Q. Zhang, A. V. Radha and A. Navrotsky, Geochim. Cosmochim. Ac., 115, 92 (2013).

    Article  CAS  Google Scholar 

  46. P. Tien and L. K. Chau, Chem. Mat., 11, 2141 (1999).

    Article  CAS  Google Scholar 

  47. H. Zaitan, D. Bianchi, O. Achak and T. Chafik, J. Hazard. Mater., 153, 852 (2008).

    Article  CAS  Google Scholar 

  48. R. A. Nyquist, C. L. Putzig and R. O. Kagel, Anne Leugers M. Infrared spectra of inorganic compounds. Michigan: Academic Press (1971).

    Google Scholar 

  49. T. Tsoncheva, G. Issa, T. Blasco, M. Dimitrov, M. Popova and S. Hernadez, Appl. Catal. A: Gen., 453, 1 (2013).

    Article  CAS  Google Scholar 

  50. M. V. Kok, Energy Sources, 24, 907 (2005).

    Article  Google Scholar 

  51. F. Ayari, E. Srasra and M. Trabelsi-Ayadi, Desalination, 185, 391 (2005).

    Article  CAS  Google Scholar 

  52. M. Sevilla and A. B. Fuertes, J. Colloid Interface Sci., 366, 147 (2012).

    Article  CAS  Google Scholar 

  53. H. Ucun, Y. K. Bayhan and Y. Kaya, J. Hazard. Mater., 153, 52 (2008).

    Article  CAS  Google Scholar 

  54. T. Fan, Y. Liu, B. Feng, G. Zeng, C. Yang, M. Zhou, H. Zhou, Z. Tan and X. Wang, J. Hazard. Mater., 160, 655 (2008).

    Article  CAS  Google Scholar 

  55. S. M. Tuzen, O. D. Uluözlü and M. Soylak, Biochem. Chem. Eng. J., 37, 151 (2007).

    Article  Google Scholar 

  56. J. M. Borah, J. Sarma and S. Mahiuddin, Colloids Surf., A, 387, 50 (2011).

    Article  CAS  Google Scholar 

  57. R. Serna-Guerrero and A. Sayari, Chem. Eng. J., 161, 182 (2010).

    Article  CAS  Google Scholar 

  58. J. Baltrusaitis and V. H. Grassian, J. Phys. Chem. B, 109, 12227 (2005).

    Article  CAS  Google Scholar 

  59. A. Wahby, J. M. Ramos-Fernandez, M. Martinez-Escandell, A. Sepulveda-Escribano, J. Silvestre-Albero and F. Rodriguez-Reinoso, ChemSusChem, 3, 974 (2010).

    Article  CAS  Google Scholar 

  60. M. Sevilla, P. Valle-Vigón and A. B. Fuertes, Adv. Funct. Mater., 21, 2781 (2011).

    Article  CAS  Google Scholar 

  61. M. Sevilla and A. B. Fuertes, Energy Environ. Sci., 4, 1765 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianbin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Gao, Y., Tang, W. et al. Characterization of high-alumina coal fly ash based silicate material and its adsorption performance to CO2 . Korean J. Chem. Eng. 33, 1369–1379 (2016). https://doi.org/10.1007/s11814-015-0243-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0243-3

Keywords

Navigation