Skip to main content
Log in

Facility siting and plant layout optimization for chemical process safety

  • Review Paper
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Designing the process layout in a chemical plant is a complex and multidisciplinary task requiring input from experts in fields such as chemical, civil, mechanical, and instrument engineering. Plant layout entails the allocation of a given number of facilities on a given piece of land. Determining the optimal distribution of facilities in a plant requires an optimization calculation, including a variety of distance constraints, one of which is related to process safety. A few approaches have been taken to transform consequence analysis, such as toxic gas dispersion and its mitigation as well as the risks of fire and explosions, into mathematical equations as constraints of an optimization problem. An optimization problem with constraints related to safety is not easy to solve given limitations such as nonlinearity, uncertainty, and ethical difficulties in converting human life to costs for calculation purposes. However, safety concerns have increased to the point that developing this type of approach is necessary. The objective of this study was to review the current methodologies for plant layout optimization and to resolve facility siting issues. Process safety concepts are considered with a view to identifying gaps and issues with current methods in order to develop better methodologies for designing safer layouts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Baker, G. Erwin, S. Priest, P. V. Tebo, I. Rosenthal, F. L. Bowman, D. Hendershot, N. Leveson, L. D. Wilson, S. Gorton and D. A. Wiegmann, The Report of the BP U. S. Refineries Independent Safety Review Panel (2007).

  2. E. Dole and G. F. Scannell, Phillips 66 Company Houston Chemical Complex Explosion and Fire (1990).

    Google Scholar 

  3. G. Joseph, M. Kaszniak and L. Long, Lessons after Bhopal: CSB a catalyst for change Journal of Loss Prevention in the Process Industries, 18 (2005).

    Google Scholar 

  4. C. A. Grounds and J. R. Natale, Guidelines for facility siting and layout, Center for chemical process safety of the American Institute of Chemical Engineers (2003).

    Google Scholar 

  5. M. S. Mannan, Lees’ Loss prevention in the process industries: Hazard identification, assessment and control, 3 Ed., Elsevier Butterworth-Heinemann, USA (2005).

    Google Scholar 

  6. M. C. Georgiadis and S. Macchietto, Comput. Chem. Eng., 21, S337 (1997).

    Article  CAS  Google Scholar 

  7. S. Jayakumar and G. V. Reklaitis, Comput. Chem. Eng., 18, 441 (1994).

    Article  CAS  Google Scholar 

  8. S. Jayakumar and G. V. Reklaitis, Comput. Chem. Eng., 20, 563 (1996).

    Article  CAS  Google Scholar 

  9. F. D. Penteado and A. R. Ciric, Ind. Eng. Chem. Res., 35, 1354 (1996).

    Article  CAS  Google Scholar 

  10. A. Drira, H. Pierreval and S. Hajri-Gabouj, Annual Reviews in Control, 31, 255 (2007).

    Article  Google Scholar 

  11. D. I. Patsiatzis and L. G. Papageorgiou, Ind. Eng. Chem. Res., 42, 14 (2003).

    Article  CAS  Google Scholar 

  12. K. Y. Lee, M. I. Roh and H. S. Jeong, Comput. Operations Res., 32, 879 (2005).

    Article  Google Scholar 

  13. J. Hwang and K. -Y. Lee, Comput. Chem. Eng., 63, 1 (2014).

    Article  CAS  Google Scholar 

  14. D. I. Patsiatzis and L. G. Papageorgiou, Comput. Chem. Eng., 26, 575 (2002).

    Article  CAS  Google Scholar 

  15. H. Schmidt-Traub, T. Holtkötter, M. Lederhose and P. Leuders, Chem. Eng. Technol., 22, 105 (1999).

    Article  CAS  Google Scholar 

  16. A. Burdorf, B. Kampczyk, M. Lederhose and H. Schmidt-Traub, Comput. Chem. Eng., 28, 73 (2004).

    Article  CAS  Google Scholar 

  17. J. M. Moore, Plant layout and design, Macmillan, New York (1962).

    Google Scholar 

  18. G. C. Armour and E. Buffa, Manage. Sci., 9, 294 (1963).

    Article  Google Scholar 

  19. R. G. Newell, Algorithms for the design of chemical plant layout and pipe routing, Chemical Engineering Department, Imperial College, London. U. K. (1973).

    Google Scholar 

  20. M. Goetschalckx, European Journal of Operational Research, 63, 304 (1992).

    Article  Google Scholar 

  21. S. Abdinnour-Helm and S. W. Hadley, International Journal of Production Research, 38, 365 (2000).

    Article  Google Scholar 

  22. K. H. Watson and J. W. Giffin, International Journal of Production Research, 35, 2477 (1997).

    Article  Google Scholar 

  23. X. Huang, W. Lai, A. S. M. Sajeev and J. Gao, Information Sciences, 177, 2821 (2007).

    Article  Google Scholar 

  24. L. R. Foulds, H. W. Hamacher and J. M. Wilson, Annals of Operations Research, 82, 405 (1998).

    Article  Google Scholar 

  25. G. W. Evans, M. R. Wilhelm and W. Karwowski, International Journal of Production Research, 25, 1431 (1987).

    Article  Google Scholar 

  26. T. D. Mavridou and P. M. Pardalos, Computational Optimization and Applications, 7, 111 (1997).

    Article  Google Scholar 

  27. C. M. L. Castell, R. Lakshmanan, J. M. Skilling and R. Bañares-Alcántara, Comput. Chem. Eng., 22, S993 (1998).

    Article  CAS  Google Scholar 

  28. B. Verweij, S. Ahmed, A. J. Kleywegt, G. Nemhauser and A. Shapiro, Computational Optimization and Applications, 24, 289 (2003).

    Article  Google Scholar 

  29. J. Martens, European Journal of Operational Research, 154, 304 (2004).

    Article  Google Scholar 

  30. X. Wu, C. -H. Chu, Y. Wang and W. Yan, European Journal of Operational Research, 181, 156 (2007).

    Article  Google Scholar 

  31. A. Bortfeldt, European Journal of Operational Research, 172, 814 (2006).

    Article  Google Scholar 

  32. A. Gomes-de-Alvarenga, F. J. Negreiros-Gomes and M. Mestria, Journal of Intelligent Manufacturing, 11, 421 (2000).

    Article  Google Scholar 

  33. J. Balakrishnan, C. H. Cheng and K. F. Wong, Computers & Operations Research, 30, 1625 (2003).

    Article  Google Scholar 

  34. A. J. R. McKendall, J. Shang and S. Kuppusamy, Computers & Operations Research, 33, 2431 (2006).

    Article  Google Scholar 

  35. J. Balakrishnan and C. H. Cheng, International Journal of Production Economics, 103, 87 (2006).

    Article  Google Scholar 

  36. A. R. S. Amaral, European Journal of Operational Research, 173, 508 (2006).

    Article  Google Scholar 

  37. T. C. Koopmans and M. Beckmann, Assignment Problems and the Location of Economic Activities, Econometrica, 25, 53 (1957).

    Google Scholar 

  38. P. M. Pardalos, F. Rentl and H. Wolkowicz, The quadratic assignment problem: A survey and recent developments, Quadratic assignment and related problems, DIMACS Series on Discrete Mathematics and Theoretical Computer Science, American Mathematical Society, 1 (1994).

    Google Scholar 

  39. S. Sahni and T. Gonzalez, P-Complete Approximation Problems Journal of the Association for Computing Machinery, 23, 555 (1976).

    Article  Google Scholar 

  40. N. Christofides, A. Mingozzi and P. Toth, European Journal of Operational Research, 4, 243 (1980).

    Article  Google Scholar 

  41. R. L. Francis, L. F. McGinnis and J. A. White, Facility layout and location: An analytical approach, 2nd Ed., Prentice-Hall International Series in Industrial and Systems Engineering, Englewood Cliffs, N. J. (1992).

    Google Scholar 

  42. H. Kelachankuttu, R. Batta and R. Nagi, European Journal of Operational Research, 180, 149 (2007).

    Article  Google Scholar 

  43. S. Savas, R. Batta and R. Nagi, Operations Research, 50, 1018 (2002).

    Article  Google Scholar 

  44. T. L. Urban, International Journal of Production Research, 25, 1805 (1987).

    Google Scholar 

  45. M. J. Rosenblatt, International Journal of Production Research, 17, 323 (1979).

    Article  Google Scholar 

  46. B. Montreuil, A modeling framework for integrating layout design and flow network design, Proceedings of the Material Handling Research Colloquium, MaterialHandling Institute, Hebron, KY, 43 (1990).

    Google Scholar 

  47. S. S. Heragu and A. Kusiak, European Journal of Operational Research, 53, 1 (1991).

    Article  Google Scholar 

  48. T. A. Lacksonen, International Journal of Production Research, 35, 1095 (1997).

    Article  Google Scholar 

  49. T. A. Lacksonen, Journal of Operational Research Society, 45, 59 (1994).

    Article  Google Scholar 

  50. M. J. Realff, N. Shah and C. C. Pantelides, Comput. Chem. Eng., 20, 869 (1996).

    Article  CAS  Google Scholar 

  51. W. Xie and N. V. Sahinidis, Comput. Chem. Eng., (2007) DOI: 10. 1016/j. compchemeng. 2007. 1005. 1003.

    Google Scholar 

  52. A. P. Barbosa-Póvoa, R. Mateus and A. Q. Novais, International Journal of Production Research, 40, 1669 (2002).

    Article  Google Scholar 

  53. L. G. Papageorgiou and G. E. Rotstein, Ind. Eng. Chem. Res., 37, 3631 (1998).

    Article  CAS  Google Scholar 

  54. A. P. Barbosa-Póvoa, R. Mateus and A. Q. Novais, Ind. Eng. Chem. Res., 41, 3610 (2002).

    Article  CAS  Google Scholar 

  55. J. Westerlund, L. G. Papageorgiou and T. Westerlund, Comput. Chem. Eng., 31(12), 1702 (2007).

    Article  CAS  Google Scholar 

  56. R. Guirardello and E. Swaney, Comput. Chem. Eng., 30, 99 (2005).

    Article  CAS  Google Scholar 

  57. H. D. Sherali, B. M. P. Fraticelli and R. D. Meller, Operations Research, 51, 629 (2003).

    Article  Google Scholar 

  58. G. Xu and L. G. Papageorgiou, Chem. Eng. Res. Design, 87, 780 (2009).

    Article  CAS  Google Scholar 

  59. G. Xu and L. G. Papageorgiou, Ind. Eng. Chem. Res., 46, 351 (2007).

    Article  CAS  Google Scholar 

  60. D. B. Özyrut and M. J. Realff, AIChE J., 45, 2161 (1999).

    Article  Google Scholar 

  61. P. J. Park and C. J. Lee, Korean Chem. Eng. Res., 52, 475 (2014).

    Article  CAS  Google Scholar 

  62. D. I. Patsiatzis, G. Knight and L. G. Papageorgiou, Trans IChemE Part A: Chem. Eng. Design, 82, 579 (2004).

    Article  CAS  Google Scholar 

  63. C. Diaz-Ovalle, R. Vazquez-Roman and M. S. Mannan, An Approach to Solve the Facility Layout Problem Based on the Worst-Case Scenario, Journal of Loss Prevention in the Process Industries, In Press, Accepted Manuscript, 385 (2010).

    Google Scholar 

  64. S. Jung, D. Ng, J. -H. Lee, R. Vazquez-Roman and M. S. Mannan, Journal of Loss Prevention in the Process Industries, 23, 139 (2010).

    Article  CAS  Google Scholar 

  65. R. Vazquez-Roman, J. -H. Lee, S. Jung and M. S. Mannan, Comput. Chem. Eng., 34, 122 (2010).

    Article  CAS  Google Scholar 

  66. C. Diaz-Ovalle, R. Vazquez-Roman, S. Jung and M. S. Mannan, Computer Aided Chemical Engineering, 26, 93 (2009).

    Article  Google Scholar 

  67. C. Díaz-Ovalle, R. Vázquez-Román, J. de Lira-Flores and M. S. Mannan, Comput. Chem. Eng., 56, 218 (2013).

    Article  CAS  Google Scholar 

  68. C. Diaz-Ovalle, R. Vazquez-Roman, R. Lesso-Arroyo and M. S. Mannan, Journal of Loss Prevention in the Process Industries, 25, 974 (2012).

    Article  CAS  Google Scholar 

  69. J. de Lira-Flores, R. Vázquez-Román, A. López-Molina and M. S. Mannan, Journal of Loss Prevention in the Process Industries, 30, 219 (2014).

    Article  Google Scholar 

  70. C. Ramírez-Marengo, C. Diaz-Ovalle, R. Vázquez-Román and M. S. Mannan, Journal of Loss Prevention in the Process Industries, 35, 249 (2015).

    Article  Google Scholar 

  71. S. Jung, D. Ng, C. Diaz-Ovalle, R. Vazquez-Roman and M. S. Mannan, Ind. Eng. Chem. Res., 50, 3928 (2011).

    Article  CAS  Google Scholar 

  72. N. Medina-Herrera, A. Jiménez-Gutiérrez and I. E. Grossmann, Comput. Chem. Eng., 68, 165 (2014).

    Article  CAS  Google Scholar 

  73. K. Park, J. Koo, D. Shin, C. J. Lee and E. S. Yoon, Korean J. Chem. Eng., 28, 1009 (2011).

    Article  CAS  Google Scholar 

  74. K. Han, Y. H. Kim, N. Jang, H. Kim, D. Shin and E. S. Yoon, Ind. Eng. Chem. Res., 52, 7274 (2013).

    Article  CAS  Google Scholar 

  75. S. Jung, D. Ng, C. D. Laird and M. S. Mannan, Journal of Loss Prevention in the Process Industries, 23, 824 (2010).

    Article  Google Scholar 

  76. M. C. Georgiadis, G. Schilling, G. E. Rotstein and S. Macchietto, Comput. Chem. Eng., 23, 823 (1999).

    Article  CAS  Google Scholar 

  77. H. Yoon, J. Park, W. Lim, K. Lee, N. Choi, C. Lee and I. Moon, Korean J. Chem. Eng., 30, 1368 (2013).

    Article  CAS  Google Scholar 

  78. J. Yang, B. Ko, C. Park, B. Yoo, D. Shin and J. Ko, Korean J. Chem. Eng., 31, 393 (2014.

    Article  CAS  Google Scholar 

  79. API, Management of Hazards Associated with Locations of Process Plant Permanent Buildings, American Petroleum Institute Washington DC (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seungho Jung.

Additional information

This paper is dedicated to Professor Hwayong Kim of Seoul National University, S. Korea, on his retirement. The author, Seungho Jung, earned his Master’s degree under Professor Kim’s direction in 2006.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, S. Facility siting and plant layout optimization for chemical process safety. Korean J. Chem. Eng. 33, 1–7 (2016). https://doi.org/10.1007/s11814-015-0242-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0242-4

Keywords

Navigation