Skip to main content

Advertisement

Log in

Experimental investigation of CO2 capture using sodium hydroxide particles in a fluidized bed

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

CO2 capture from air using sodium hydroxide solid sorbent in a laboratory scale fluidized bed reactor was investigated experimentally. The influence of three parameters of temperature, inlet CO2 volume percentage and inlet air flow rate on the CO2 removal rate was studied. Experimental results showed that the optimum rate was at 25 °C when the inlet CO2 volume percentage was 1%. The results also showed that the adsorption process was reactive, and the reaction mechanism depended on the reaction temperature. In addition, empirical observation revealed only one adsorption cycle happened at low temperatures (25-30 °C). As the temperature increased, the second adsorption cycle occurred and, finally, CO2 desorption cycle took place in the range of 90-115 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. M. Kim and J. Cho, Korean J. Chem. Eng., 28, 22 (2011).

    Article  CAS  Google Scholar 

  2. A. Benamor and M. K. Aroua, Korean J. Chem. Eng., 24, 16 (2007).

    Article  CAS  Google Scholar 

  3. F. Karadas, M. Atilhan and S. Aparicio, Energy Fuels, 24, 5817 (2010).

    Article  CAS  Google Scholar 

  4. H. Yang, Z. Xu, M. Fan, R. Gupta, R. Slimane and A. Bland, J. Environ. Sci., 20, 14 (2008).

    Article  CAS  Google Scholar 

  5. M. Duke, B. Ladewig, S. Smart, V. Rudolph and J. D. d. Costa, Front. Chem. Sci. Eng., 4, 184 (2010).

    Article  CAS  Google Scholar 

  6. B. Dutcher, M. Fan and B. Leonard, Sep. Purif. Technol., 80, 364 (2011).

    Article  CAS  Google Scholar 

  7. M. Kianpour, M. Sobati and S. Shahhosseini, Chem. Eng. Res. Des., 90, 2041 (2012).

    Article  CAS  Google Scholar 

  8. K. Kim, D. Kim, Y.-K. Park and K. S. Lee, Int. J. Greenhouse Gas Control, 26, 135 (2014).

    Article  CAS  Google Scholar 

  9. T. Gupta and R. Ghosh, Int. J. Greenhouse Gas Control, 32, 172 (2015).

    Article  CAS  Google Scholar 

  10. M. M. Shahrestani and A. Rahimi, Environ. Eng. Res., 19, 299 (2014).

    Article  Google Scholar 

  11. M. G. Plaza, I. Durán, F. Rubiera and C. Pevida, Appl. Energy, 144, 182 (2015).

    Article  CAS  Google Scholar 

  12. M. Alfea, P. Ammendola, V. Gargiulo, F. Raganatib and R. Chirone, Proceedings of the Combustion Institute, 35, 2801 (2015).

    Article  Google Scholar 

  13. H. Seo, D. Y. Min, N. Y. Kang, W. C. Choi, S. Park, Y.-K. Park and D. K. Lee, Korean J. Chem. Eng., 32, 51 (2015).

    Article  CAS  Google Scholar 

  14. V. Nikulshina, C. Gebald and A. Steinfeld, Chem. Eng. J., 146, 244 (2009).

    Article  CAS  Google Scholar 

  15. J. W. Butler, C. J. Lim and J. R. Grace, Chem. Eng. Res. Des., 89, 1794 (2011).

    Article  CAS  Google Scholar 

  16. M. S. Masnadi, J. R. Grace, X. T. Bi, N. Ellis, C. J. Lim and J. W. Butler, Energy, 83, 326 (2015).

    Article  CAS  Google Scholar 

  17. J. Blamey, V. Manovic, E. J. Anthony, D. R. Dugwell and P. S. Fennell, Fuel, 150, 269 (2015).

    Article  CAS  Google Scholar 

  18. S. Pourebrahimi, M. Kazemeini, E. G. Babakhani and A. Taheri, Micropor. Mesopor. Mater., 218, 144 (2015).

    Article  CAS  Google Scholar 

  19. D. Cheng, Y. Liu, H. Wang, X. Weng and Z. Wu, J. Environ. Sci., 38, 1 (2015).

    Article  CAS  Google Scholar 

  20. G. Duelli, A. Charitos, M. E. Diego, E. Stavroulakis, H. Dieter and G. Scheffknecht, Int. J. Greenhouse Gas Control, 33, 103 (2015).

    Article  CAS  Google Scholar 

  21. A. Antzara, E. Heracleous and A. A. Lemonidou, Appl. Energy, 156, 331 (2015).

    Article  CAS  Google Scholar 

  22. D. Kunii and O. Levenspiel, Fluidization engineering, 2nd Ed., Butterworth-Heinemann, Boston (1991).

    Google Scholar 

  23. M. Ayobi, S. Shahhosseini and Y. Behjat, J. Taiwan. Inst. Chem. E., 45, 421 (2013).

    Article  Google Scholar 

  24. J.-H. Choi, C.-K. Yi, S.-H. Jo, H.-J. Ryu and Y.-C. Park, Korean J. Chem. Eng., 31, 194 (2014).

    Article  CAS  Google Scholar 

  25. W. Zhang, H. Liu, C. Sun, T. C. Drage and C. E. Snape, Chem. Eng. Sci., 116, 306 (2014).

    Article  CAS  Google Scholar 

  26. V. Nikulshina, N. Ayesa, M. E. Galvez and A. Steinfeld, Chem. Eng. J., 140, 62 (2008).

    Article  CAS  Google Scholar 

  27. Cameron-cole, Salt creek phases III/IV environmental assessment, U.S. Department of the Interior (2006).

  28. J. B. Lee, C. K. Ryu, J.-I. Baek, J. H. Lee, T. H. Eom and S. H. Kim, Ind. Eng. Chem. Res., 47, 4465 (2008).

    Article  CAS  Google Scholar 

  29. D. Geldart, Powder Technol., 7, 285 (1973).

    Article  CAS  Google Scholar 

  30. R. V. Siriwardane, C. Robinson, M. Shen and T. Simonyi, Energy Fuels, 21, 2088 (2007).

    Article  CAS  Google Scholar 

  31. Y. Liang, Carbon dioxide capture from flue gas using regenerable sodium-based sorbents, Master of Science in Chemical Engineering, Tsinghua University, Beijing, China (2003).

    Google Scholar 

  32. C. Zhao, X. Chen, E. J. Anthony, X. Jiang, L. Duan and Y. Wu, Prog. Energy Combust. Sci., 39, 515 (2013).

    Article  Google Scholar 

  33. C.-K. Yi, S. H. Jo, Y. Seo, S. D. Park, K. H. Moon and J. S. Yoo, Stud. Surf. Sci. Catal., 159, 501 (2006).

    Article  CAS  Google Scholar 

  34. C.-K. Yi, S.-H. Jo, Y. Seo, J.-B. Lee and C.-K. Ryu, Int. J. Greenhouse Gas Control, 1, 31 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahad Ghaemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naeem, S., Ghaemi, A. & Shahhosseini, S. Experimental investigation of CO2 capture using sodium hydroxide particles in a fluidized bed. Korean J. Chem. Eng. 33, 1278–1285 (2016). https://doi.org/10.1007/s11814-015-0237-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0237-1

Keywords

Navigation