CO x -free hydrogen and carbon nanofibers production by methane decomposition over nickel-alumina catalysts

Abstract

Nickel catalysts supported on mesoporous nanocrystalline gamma alumina with various nickel loadings were prepared and employed for thermocatalytic decomposition of methane into CO x -free hydrogen and carbon nanofibers. The prepared catalysts with different nickel contents exhibited mesoporous structure with high surface area in the range of 121.3 to 66.2m2g−1. Increasing in nickel content decreased the pore volume and increased the crystallite size. The catalytic results revealed that the nickel content and operating temperature both play important roles on the catalytic performance of the prepared catalysts. The results showed that increasing in reaction temperature increased the initial conversion of catalysts and significantly decreased the catalyst lifetime. Scanning electron microscopy (SEM) analysis of the spent catalysts evaluated at different temperatures revealed the formation of intertwined carbon filaments. The results showed that increasing in reaction temperature decreased the diameters of nanofibers and increased the formation of encapsulating carbon.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    H. F. Abbas and W. W. Daud, Int. J. Hydrogen Energy, 35, 1160 (2010).

    Article  CAS  Google Scholar 

  2. 2.

    Y. Li, D. Li and G. Wang, Catal. Today, 162, 1 (2011).

    Article  CAS  Google Scholar 

  3. 3.

    D. J. Wuebbles and A. K. Jain, Fuel Processing Technol., 71, 99 (2001).

    Article  CAS  Google Scholar 

  4. 4.

    A. M. Amin, E. Croiset and W. Epling, Int. J. Hydrogen Energy, 36, 2904 (2011).

    Article  CAS  Google Scholar 

  5. 5.

    H. T. Jang, and W. S. Cha, Korean J. Chem. Eng., 24, 374 (2007).

    Article  CAS  Google Scholar 

  6. 6.

    J. U. Jung, W. Nam, K. J. Yoon and G. Y. Han, Korean J. Chem. Eng., 24, 674 (2007).

    Article  CAS  Google Scholar 

  7. 7.

    A. M. Amin, E. Croiset, C. Constantinou and W. Epling, Int. J. Hydrogen Energy, 37, 9038 (2012).

    Article  CAS  Google Scholar 

  8. 8.

    H. Arandiyan, J. Li, L. Ma, S. Hashemnejad, M. Mirzaei, J. Chen, H. Chang, C. Liu, C. Wang and L. Chen, J. Ind. Eng. Chem., 18, 2103 (2012).

    Article  CAS  Google Scholar 

  9. 9.

    G. Marbán and T. Valdés-Solís, Int. J. Hydrogen Energy, 32, 1625 (2007).

    Article  Google Scholar 

  10. 10.

    A. C. Lua and H. Y. Wang, Appl. Catal. B: Environ., 132-133, 469 (2013).

    Article  CAS  Google Scholar 

  11. 11.

    R. Kothari, D. Buddhi and R. Sawhney, Renewable and Sustainable Energy Reviews, 12, 553 (2008).

    Article  CAS  Google Scholar 

  12. 12.

    J. D. Holladay, J. Hu, D. L. King and Y. Wang, Catal. Today, 139, 244 (2009).

    Article  CAS  Google Scholar 

  13. 13.

    A. Khalesi, H, Arandiyan and M. Parvari, Chinese J. Catal., 29, 960 (2008).

    Article  CAS  Google Scholar 

  14. 14.

    H. Arandiyan, Y. Peng, C. Liu, H. Chang and J. Li, J. Chem. Technol. Biotechnol., 89, 372 (2014).

    Article  CAS  Google Scholar 

  15. 15.

    M. H. Kim, E. K. Lee, J. H. Jun, G. Y. Han, S. J. Kong, B. K. Lee, T.-J. Lee and K. J. Yoon, Korean J. Chem. Eng., 20, 835 (2003).

    Article  CAS  Google Scholar 

  16. 16.

    R. Navarro, M. Pena and J. Fierro, Chem. Reviews, 107, 3952 (2007).

    Article  CAS  Google Scholar 

  17. 17.

    J. T. Overpeck and J. E. Cole, Annu. Rev. Environ. Resour., 31, 1 (2006).

    Article  Google Scholar 

  18. 18.

    Q. Weizhong, L. Tang, W. Zhanwen, W. Fei, L. Zhifei, L. Guohua and L. Yongdan, Appl. Catal. A: Gen., 260, 223 (2004).

    Article  Google Scholar 

  19. 19.

    J. Chen, Y. Li, Z. Li and X. Zhang, Appl. Catal. A: Gen., 269, 179 (2004).

    Article  CAS  Google Scholar 

  20. 20.

    S. C. Lee, H. J. Seo and G. Y. Han, Korean J. Chem. Eng., 30, 1716 (2013).

    Article  CAS  Google Scholar 

  21. 21.

    M.-F. Yu, B. S. Files, S. Arepalli and R. S. Ruoff, Phys. Review Lett., 84, 5552 (2000).

    Article  CAS  Google Scholar 

  22. 22.

    S. K. Saraswat and K. K. Pant, J. Natural Gas Sci. Eng., 13, 52 (2013).

    Article  CAS  Google Scholar 

  23. 23.

    M. Ermakova and D. Y. Ermakov, Catal. Today, 77, 225 (2002).

    Article  CAS  Google Scholar 

  24. 24.

    Y. Li, B. Zhang, X. Tang, Y. Xu and W. Shen, Catal. Commun., 7, 380 (2006).

    Article  CAS  Google Scholar 

  25. 25.

    A.-C. Dupuis, Progress in Materials Science, 50, 929 (2005).

    Article  CAS  Google Scholar 

  26. 26.

    S. Helveg, C. Lopez-Cartes, J. Sehested, P. L. Hansen, B. S. Clausen, J. R. Rostrup-Nielsen, F. Abild-Pedersen and J. K. Nørskov, Nature, 427, 426 (2004).

    Article  CAS  Google Scholar 

  27. 27.

    F. Abild-Pedersen, J. K. Nørskov, J. R. Rostrup-Nielsen, J. Sehested and S. Helveg, Phys. Review B, 73, 115419 (2006).

    Article  Google Scholar 

  28. 28.

    W. Wang, H. Wang, Y. Yang and S. Jiang, Int. J. Hydrogen Energy, 37, 9058 (2012).

    Article  CAS  Google Scholar 

  29. 29.

    J. C. Guevara, J. A. Wang, L. F. Chen, M. A. Valenzuela, P. Salas, A. García-Ruiz, J. A. Toledo, M. A. Cortes-Jácome, C. Angeles-Chavez and O. Novaro, Int. J. Hydrogen Energy, 35, 3509 (2010).

    Article  CAS  Google Scholar 

  30. 30.

    J. Ashok, G. Raju, P. S. Reddy, M. Subrahmanyam and A. Venugopal, Int. J. Hydrogen Energy, 33, 4809 (2008).

    Article  CAS  Google Scholar 

  31. 31.

    J. Ashok, M. Subrahmanyam and A. Venugopal, Int. J. Hydrogen Energy, 33, 2704 (2008).

    Article  CAS  Google Scholar 

  32. 32.

    G. Leofanti, M. Padovan, G. Tozzola and B. Venturelli, Catal. Today, 41, 207 (1998).

    Article  CAS  Google Scholar 

  33. 33.

    Z. Alipour, M. Rezaei and F. Meshkani, Fuel, 129, 197 (2014).

    Article  CAS  Google Scholar 

  34. 34.

    A. E. Awadallah, A. A. Aboul-Enein and A. K. Aboul-Gheit, Renewable Energy, 57, 671 (2013).

    Article  CAS  Google Scholar 

  35. 35.

    R. Wang, Y. Li, R. Shi and M. Yang, J. Mol. Catal. A: Chemical, 344, 122 (2011).

    Article  CAS  Google Scholar 

  36. 36.

    M. Wu and D. M. Hercules, J. Phys. Chem., 83, 2003 (1979).

    Article  CAS  Google Scholar 

  37. 37.

    C. Li and Y. W. Chen, Thermochim. Acta, 256, 457 (1995).

    Article  CAS  Google Scholar 

  38. 38.

    M. Ermakova, D. Y. Ermakov and G. Kuvshinov, Appl. Catal. A: Gen., 201, 61 (2000).

    Article  CAS  Google Scholar 

  39. 39.

    S. G. Zavarukhin and G. G. Kuvshinov, Appl. Catal. A: Gen., 272, 219 (2004).

    Article  CAS  Google Scholar 

  40. 40.

    Y. Li, J. Chen, Y. Ma, J. Zhao, Y. Qin and L. Chang, Chem. Commun., 12, 1141 (1999).

    Article  Google Scholar 

  41. 41.

    R. Baker, M. Barber, P. Harris, F. Feates and R. Waite, J. Catal., 26, 51 (1972).

    Article  CAS  Google Scholar 

  42. 42.

    J. L. Chen, X. M. Li, Y. D. Li and Y. N. Qin, Chem. Lett., 32, 424 (2003).

    Article  CAS  Google Scholar 

  43. 43.

    J. W. Snoeck, G. F. Froment, M. Fowles, J. Catal., 169, 240 (1997).

    Article  CAS  Google Scholar 

  44. 44.

    S. Takenaka, M. Ishida, M. Serizawa, E. Tanabe and K. Otsuka, J. Phys. Chem. B, 108, 11464 (2004).

    Article  CAS  Google Scholar 

  45. 45.

    M. R. Quddus, M. M. Hossain and H. I. de Lasa, Catal. Today, 210, 124 (2013).

    Article  CAS  Google Scholar 

  46. 46.

    Y. Echegoyen, I. Suelves, M. J. Lázaro, R. Moliner and J. M. Palacios, J. Power Sources, 169, 150 (2007).

    Article  CAS  Google Scholar 

  47. 47.

    I. Suelves, M. Lázaro, R. Moliner, B. Corbella and J. Palacios, Int. J. Hydrogen Energy, 30, 1555 (2005).

    Article  CAS  Google Scholar 

  48. 48.

    Y. Li, B. Zhang, X. Xie, J. Liu, Y. Xu and W. Shen, J. Catal., 238, 412 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mehran Rezaei.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bayat, N., Rezaei, M. & Meshkani, F. CO x -free hydrogen and carbon nanofibers production by methane decomposition over nickel-alumina catalysts. Korean J. Chem. Eng. 33, 490–499 (2016). https://doi.org/10.1007/s11814-015-0183-y

Download citation

Keywords

  • Methane Decomposition
  • Hydrogen
  • CO x -free
  • Carbon Nanofibers
  • Nickel
  • Alumina