Korean Journal of Chemical Engineering

, Volume 33, Issue 2, pp 465–472 | Cite as

Catalytic application of metallic iron from the dyeing sludge ash for benzene steam reforming reaction in tar emitted from biomass gasification

  • Sung-Bang Nam
  • Yeong-Su Park
  • Yong-Sik Yun
  • Jae-Hoi Gu
  • Ho-Jin SungEmail author
  • Masayuki Horio
Catalysis, Reaction Engineering


Because it is the most promising method for reforming tar in a gasification system, a catalytic steam reforming reaction of tar using a dyeing sludge ash catalyst that contains mostly iron oxide has been modeled using benzene to investigate whether a steam reforming catalyst produced from waste is viable. The catalytic activity of the ash catalyst is similar to that of the commercially available iron-chrome-based catalyst for the same equivalent total amount of Fe2O3. The activity over the ash catalyst has been examined in terms of the weight hour space velocity (WHSV) and the reaction temperature to develop a model for the reaction kinetics. Using a power law model, the reaction order coefficients of the benzene and steam were estimated to be 0.43 and 0, respectively. The activation energy required for the ash catalyst was approximately 187.6 kJ mol−1. In addition, the reductive properties of the iron oxide in the ash catalyst were also examined via XRD and H2-TPR analyses.


Biomass Gasification Steam Reforming Catalytic Tar Reduction Iron Oxide Catalyst Benzene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Devi, K. J. Ptasinski, F. J. J. G. Janssen, S.V.B. van Paasen, P. C.A. Bergman and J.H. A. Kiel, Ren. Eng., 30, 565 (2005).CrossRefGoogle Scholar
  2. 2.
    P. Mckendry, Bio. Technol., 83, 55 (2002).CrossRefGoogle Scholar
  3. 3.
    U.W. E. A. Schneider and B. A. McCarl, Environ. Resour. Econ., 24, 291 (2003).CrossRefGoogle Scholar
  4. 4.
    J. Han and H. Kim, Renew. Sustainable Energy Rev., 12, 397 (2008).CrossRefGoogle Scholar
  5. 5.
    H. Noichi, A. Uddin and E. Sasaoka, Fuel Process Technol., 91, 1609 (2010).CrossRefGoogle Scholar
  6. 6.
    R. Coll, J. Salvado, X. Farriol and D. Montane, Fuel Process Technol., 74, 19 (2001).CrossRefGoogle Scholar
  7. 7.
    L. Xu, J. Liu, Q. Wang, S. Liu, W. Xin and Y. Xu, Appl. Catal., 258, 47 (2004).CrossRefGoogle Scholar
  8. 8.
    M. Nagao and Y. Suda, Langmuir, 5, 42 (1989).CrossRefGoogle Scholar
  9. 9.
    T.A. Milne, R. J. Evans and N. Abatzoglou, Technical Report; NREL: USA, NREL/TP-570-25357, November (1998).Google Scholar
  10. 10.
    D. Swierczynski, S. Libs, C. Courson and A. Kiennemann, Appl. Catal. B: Environ., 74, 211 (2007).CrossRefGoogle Scholar
  11. 11.
    R. Zhang, Y. Wang and R.C. Brown, Eng. Conv. Manage., 48, 68 (2007).CrossRefGoogle Scholar
  12. 12.
    K. Polychronopoulou, A. Bakandritsos, V. Tzitzios, J.L.G. Fierro and A.M. Efstathiou, J. Catal., 241, 132 (2006).CrossRefGoogle Scholar
  13. 13.
    M. A. Edwards, D. M. Whittle, C. Rhodes, A. M. Ward, D. Rohan, M.D. Shannon, G. J. Hutchings and C. J. Kiely, Phys. Chem. Chem. Phys., 4, 3902 (2002).CrossRefGoogle Scholar
  14. 14.
    P. Kumar and R. Idem, Eng. Fuels, 21, 522 (2007).CrossRefGoogle Scholar
  15. 15.
    M.D. A. Uddin, H. Tsuda, S. Wu and E. Sasaoka, Fuel, 87, 451 (2008).CrossRefGoogle Scholar
  16. 16.
    D. Ross. R. Noda, M. Horio, A. Kosminski, P. Ashman and P. Mullinger, Fuel, 86, 1417 (2007).CrossRefGoogle Scholar
  17. 17.
    T. Nordgreen, T. Liliedahl and K. Sjöström, Fuel, 85, 689 (2006).CrossRefGoogle Scholar
  18. 18.
    K. Tomishige, T. Miyazawa, M. Asadullah, S. Ito and K. Kunimori, Green. Chem., 5, 399 (2003).CrossRefGoogle Scholar
  19. 19.
    K. Tomishige, M. Asadullah and K. Kunimori, Catal. Today, 89, 389 (2004).CrossRefGoogle Scholar
  20. 20.
    D. Sutton, B. Kelleher and J.R. H. Ross, Fuel Process Technol., 13, 155 (2001).CrossRefGoogle Scholar
  21. 21.
    Y. S. Park, Ph.D. Dissertation, Tokyo Institute of Technology, Tokyo, Japan (2012).Google Scholar
  22. 22.
    N. Gao, A. Li, C. Quan and F. Gao, Int. J. Hydrogen. Energy, 33, 5430 (2008).CrossRefGoogle Scholar
  23. 23.
    L. Ma, B. Gong, T. Tran and M. S. Wainwright, Catal. Today, 63, 499 (2000).CrossRefGoogle Scholar
  24. 24.
    K.K. Pant, R. Jain and S. Jain, Korean J. Chem. Eng., 28, 1859 (2011).CrossRefGoogle Scholar
  25. 25.
    P. Kuchonthara, B. Puttasawat, P. Piumsomboon, L. Mekasut and T. Vitidsant, Korean J. Chem. Eng., 29, 1525 (2012).CrossRefGoogle Scholar
  26. 26.
    M. B. Talawar, T.M. Jyothi, P.D. Sawant, T. Raja and B. S. Raw, Green. Chem., 2, 266 (2000).CrossRefGoogle Scholar
  27. 27.
    X. A. Garcia and K. J. Hüttinger, Erdöl Kohle Erdgas Petrochem., 43, 273 (1990).Google Scholar
  28. 28.
    C. H. Bartholomew, Appl. Catal. A: Gen., 212, 17 (2001).CrossRefGoogle Scholar
  29. 29.
    E. G. Baker, L. K. Mudge and M.D. Brown, Ind. Eng. Chem. Res., 26, 1335 (1987).CrossRefGoogle Scholar
  30. 30.
    G. H. Lee, J. G. Park, Y. M. Sung, K.Y. Chung, W. I. Cho and D.W. Kim, Nanotechnol., 20, 295205 (2009).CrossRefGoogle Scholar
  31. 31.
    G. Munteanu, L. Ilieva and D. Andreeva, Thermochimica Acta, 291, 171 (1997).CrossRefGoogle Scholar
  32. 32.
    K. Polychronopoulou, A. Bakandritsos, V. Tzitzios, J. L. G. Fierro and A. M. Efstathiou, J. Catal., 241, 132 (2006).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2016

Authors and Affiliations

  • Sung-Bang Nam
    • 1
  • Yeong-Su Park
    • 1
  • Yong-Sik Yun
    • 1
  • Jae-Hoi Gu
    • 1
  • Ho-Jin Sung
    • 1
    Email author
  • Masayuki Horio
    • 2
  1. 1.Plant Engineering CenterInstitute for Advanced EngineeringSeoulKorea
  2. 2.Department of Chemical Engineering, Graduate School of Bio-Applications and Systems EngineeringTokyo University of Agriculture and TechnologyTokyoJapan

Personalised recommendations