Skip to main content
Log in

Solvent recovery in solvent deasphalting process for economical vacuum residue upgrading

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The solvent deasphalting (SDA) process is a heavy oil upgrading process and used to separate asphaltene, the heaviest and most polar fraction of vacuum residue (VR) of heavy oil, by using density differences, to obtain deasphalted oil (DAO). The SDA process consists of two main stages: asphaltene separation and solvent recovery. Solvent recovery is a key procedure for determining the operating cost of the SDA process, because it uses a considerable amount of costly solvent, the recovery of which consumes huge amounts of energy. In this study, the SDA process was numerically simulated by using three different solvents, propane, n-butane, and isobutane, to examine their effect on the DAO extraction and the effect of the operating temperature and pressure on solvent recovery. The process was designed to contain one extractor, two flash drums, and two steam strippers. The VR was characterized by identifying 15 pseudo-components based on the boiling point distribution, obtained by performing a SIMDIS analysis, and the API gravity of the components. When n-butane was used, the yield of DAO was higher than in the other cases, whereas isobutane showed a similar extraction performance as propane. Solvent recovery was found to increase with temperature and decrease with pressure for all the solvents that were tested and the best results were obtained for propane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Shi, Y. Hu, Z. Xu, T. Su and R. Wang, Ind. Eng. Chem. Res., 36, 3988 (1997).

    Article  CAS  Google Scholar 

  2. M. Ahmaruzzaman and D.K. Sharma, Energy Fuels, 20, 2498 (2006).

    Article  CAS  Google Scholar 

  3. S. Shin, J. M. Lee, J.W. Hwang, H.W. Jung, N. S. Nho and K.B. Lee, Chem. Eng. J., 257, 242 (2014).

    Article  CAS  Google Scholar 

  4. J.A. Carrillo and L.M. Corredor, Fuel Process. Technol., 109, 156 (2013).

    Article  CAS  Google Scholar 

  5. N. Chang and Z. Gu, Korean J. Chem. Eng., 31, 780 (2014).

    Article  CAS  Google Scholar 

  6. J.A. Gearhart and L. Garwin, Hydrocarb. Process., 55, 125 (1976).

    Google Scholar 

  7. R.A. Meyers, Handbook of petroleum refining processes, McGraw-Hill, New York (2004).

    Google Scholar 

  8. J.G. Speight, Heavy and extra-heavy oil upgrading technologies, Gulf Professional Publishing, United Kingdom (2013).

    Google Scholar 

  9. H. De Lasa, G. Dogammau and A. Ravella, Chemical reactor technology for environmentally safe reactors and products, Springer, Canada (1992).

    Book  Google Scholar 

  10. R. Iqbal, A. Khan, O. Eng and R. Floyd, PTQ, 13, 31 (2008).

    Google Scholar 

  11. A. Huc, Heavy crude oils: from geology to upgrading: an overview, Editions Technip (2010).

    Google Scholar 

  12. M. N. Dadashev and G.V. Stepanov, Chem. Tech. Fuels Oils, 36, 8 (2000).

    Article  CAS  Google Scholar 

  13. M. Subramanian and F.V. Hanson, Fuel Process. Technol., 55, 35 (1998).

    Article  CAS  Google Scholar 

  14. P. Luo and Y. Gu, Fluid Phase Equilib., 277, 1 (2009).

    Article  CAS  Google Scholar 

  15. J. Ancheyta, G. Centeno, F. Trejo, G. Marroquin, J. Garcia, E. Tenorio and A. Torres, Energy Fuels, 16, 1121 (2002).

    Article  CAS  Google Scholar 

  16. F. Trejo, G. Centeno and J. Ancheyta, Fuel, 83, 2169 (2004).

    Article  CAS  Google Scholar 

  17. J.M. Lee, S. Shin, S. Ahn, J. H. Chun, K. B. Lee, S. Mun, S. G. Jeon, J. G. Na and N. S. Nho, Fuel Process Technol., 119, 204 (2014).

    Article  CAS  Google Scholar 

  18. V.O. C. Cardenas, E.T. Koroishi, F.A.B. Quirino, F.W.R. Rivarola, E.A. Boss, G.W. C. Oliveira, M.R.W. Maciel, R.M. Filho and L. C. Medina, Chem. Eng. Trans., 11, 905 (2007).

    Google Scholar 

  19. L. Wang and J. Gmehling, AIChE J., 45, 1125 (1999).

    Article  CAS  Google Scholar 

  20. P. Bahrami, R. Kharrat, S. Mahdavi, Y, Ahmadi and L. James, Korean J. Chem. Eng., 32, 316 (2015).

    Article  CAS  Google Scholar 

  21. W.M. Haynes, CRC handbook of chemistry and physics, CRC Press (2012).

    Google Scholar 

  22. F. Cao, D. Jiang, W. Li, P. Du, G. Yang and W. Ying, Chem. Eng. Process., 49, 91 (2010).

    Article  CAS  Google Scholar 

  23. D.C. Villalanti, J.C. Raia and J. B. Maynard, High-temperature simulated distillation applications in petroleum characterization, in: R. A. Meyers (Ed.), Encyclopedia of Analytical Chemistry, Wiley, Chichester (2000).

  24. O. C. Mullins, B. Martínez-Haya and A. G. Marshall, Energy Fuels, 22, 1765 (2008).

    Article  CAS  Google Scholar 

  25. H. Groenzin and O. C. Mullins, J. Phys. Chem. A, 103, 11237 (1999).

    Article  CAS  Google Scholar 

  26. S. Zhao, Z. Xu, C. Xu, K. H. Chung and R. Wang, Fuel, 84, 635 (2005).

    Article  CAS  Google Scholar 

  27. S. H. Ng, Energy Fuels, 11, 1127 (1997).

    Article  CAS  Google Scholar 

  28. L. C. Kahre, J. Chem. Eng. Data, 18, 267 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ki Bong Lee or Nam Sun Nho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, S., Shin, S., Im, S.I. et al. Solvent recovery in solvent deasphalting process for economical vacuum residue upgrading. Korean J. Chem. Eng. 33, 265–270 (2016). https://doi.org/10.1007/s11814-015-0146-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0146-3

Keywords

Navigation