Skip to main content
Log in

A simple synthesis of Ag2+x Se nanoparticles and their thin films for electronic device applications

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A simple method to synthesize silver selenide nanoparticles has been proposed. By changing the ratio of Se-oleylamine complex and silver acetate in the reacting mixture at different temperatures, both size and stoichiometry of the silver selenide particles could be successfully controlled. The size of the nanoparticles was adjusted by changing reaction temperatures. The synthesized silver selenide nanoparticles showed size changes from 3 to 10 nm when the corresponding reaction temperatures were 40–100°C, respectively. In addition to the size change, the stoichiometry of the synthesized nanoparticles (Ag2+x Se) could be adjusted by simply varying the ratio of Ag to Se precursors. Through XPS analyses the x value in Ag2+x Se was determined, and it changed between 0.54 and −0.03 by varying Ag/Se ratio from 2/0.75 to 2/4. The optical property of the nonstoichiometric Ag2+x Se nanoparticles was different from that of stoichiometric Ag2Se nanoparticles, but showed the plasmon absorption of Ag-Ag network. The plasmon absorption was decreased with the increased concentration of the Se precursor. Finally, the Ag2+x Se thin film in this work showed large magnetoresistance and successfully applied to prepare high-performance Schottky diode. The Ag2.06Se film exhibited the magnetoresistance effect up to 0.9% at only 0.8 T at room temperature. The voltage drop and breakdown voltage of the Schottky diode were 0.5 V and 9.3 V, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-P. Ge, S. Xu, L.-P. Liu and Y.-D. Li., Chem. Eur. J., 12, 3672 (2006).

    Article  CAS  Google Scholar 

  2. C. H. B. Ng, H. Tan and W. Y. Fan, Langmuir, 22, 9712 (2006).

    Article  CAS  Google Scholar 

  3. S. K. Batabyal, C. Basu, A. R. Das and G. S. Sanyal, Cryst. Growth Des., 4, 509 (2004).

    Article  CAS  Google Scholar 

  4. M. T. Ng, C. Boothroyd and J. J. Vittal, Chem. Commun., 30, 3820 (2005).

    Article  CAS  Google Scholar 

  5. D. Li, Z. Zheng, Z. Shui, M. Long, J. Yu, K. W. Wong, L. Yang, L. Zhang and W. M. Lau, J. Phys. Chem. C, 112, 2845 (2008).

    Article  CAS  Google Scholar 

  6. S. P. Anthony, Mater. Lett., 63, 773 (2009).

    Article  CAS  Google Scholar 

  7. S.-Y. Zhang, C.-X. Fang, W. Wei, B.-K. Jin, Y.-P. Tian, Y.-H. Shen, J.-X. Yang and H.-W. Gao, J. Phys. Chem. C, 111, 4168 (2007).

    Article  CAS  Google Scholar 

  8. B. Gates, B. Mayers, Y. Wu, Y. Sun, B. Cattle, P. Yang and Y. Xia, Adv. Funct. Mater., 12, 679 (2002).

    Article  CAS  Google Scholar 

  9. H. Wang and L. Qi, Adv. Funct. Mater., 18, 1249 (2008).

    Article  CAS  Google Scholar 

  10. H. Su, Y. Xie, B. Li and Y. Qian, Mater. Res. Bull., 35, 465 (2000).

    Article  CAS  Google Scholar 

  11. Y. J. Glanville, D. G. Narehood, P. E. Sokol, A. Amma and T. Mallouk, J. Mater. Chem., 12, 2433 (2002).

    Article  CAS  Google Scholar 

  12. Y.-I. Yan, X.-F. Qian, H.-J. Xu, J. Yin and Z.-K. Zhu, Inorg. Chem. Commun., 6, 34 (2003).

    Article  CAS  Google Scholar 

  13. W. Wang, Y. Geng, Y. Qian, M. Ji and Y. Xie, Mater. Res. Bull., 34, 877 (1999).

    Article  Google Scholar 

  14. D. T. Schoen, C. Xie and Y. Cui, J. Am. Chem. Soc., 129, 4116 (2007).

    Article  CAS  Google Scholar 

  15. V. Buschmann, G. Van Tendeloo, Ph. Monnoyer and J. B. Nagy, Langmuir, 14, 1528 (1998).

    Article  CAS  Google Scholar 

  16. A. Sahu, A. Khare, D. D. Deng and D. J. Norris, Chem. Commun., 48, 5458 (2012).

    Article  CAS  Google Scholar 

  17. A. Panneerselvam, C. Q. Nguyen, M. A. Malik, P. O’Brien and J. Raftery, J. Mater. Chem., 19, 419 (2009).

    Article  CAS  Google Scholar 

  18. M. Jafari, M. Salavati-Niasari and A. Sobhani, Micro & Nano Lett., 8, 508 (2013).

    Article  CAS  Google Scholar 

  19. D. Wang, T. Xie, Q. Peng and Y. Li, J. Am. Chem. Soc., 130, 4016 (2008).

    Article  CAS  Google Scholar 

  20. D. H. Son, S. M. Hughes, Y. Yin and A. P. Alivisatos, Science, 306, 1009 (2004).

    Article  CAS  Google Scholar 

  21. Y.-P. Gu, R. Cui, Z.-L. Zhang, Z.-X. Xie and D.-W. Pang, J. Am. Chem. Soc., 134, 79 (2012).

    Article  CAS  Google Scholar 

  22. B. Dong, C. Li, G. Chen, Y. Zhang, Y. Zhang, M. Deng and Q. Wang, Chem. Mater., 25, 503 (2013).

    Article  CAS  Google Scholar 

  23. M. A. El-Sayed, Acc. Chem. Res., 37, 326 (2004).

    Article  CAS  Google Scholar 

  24. S. Neeleshwar, C. L. Chen, C. B. Tsai, Y. Y. Chen, C. C. Chen, S. G. Shyu and M. S. Seehra, Phys. Rev. B, 71, 201307 (2005).

    Article  CAS  Google Scholar 

  25. J. Jasieniak, L. Smith, J. van Embden, P. Mulvaney and M. Califano, J. Phys. Chem., 113, 19468 (2009).

    CAS  Google Scholar 

  26. Y. W. Wang, J. S. Kim, G. H. Kim and K. S. Kim, Appl. Phys. Lett., 88, 143106 (2006).

    Article  CAS  Google Scholar 

  27. J. M. Luther, P. K. Jain, T. Ewers and A. P. Alivisatos, Nat. Mater., 10, 361 (2011).

    Article  CAS  Google Scholar 

  28. M. M. Alvarez, J. T. Khoury, T. G. Schaaff, M. N. Shafigullin, I. Vezmar and R. L. Whetten, J. Phys. Chem., 101, 3706 (1997).

    Article  CAS  Google Scholar 

  29. S. Park, M.-K. Son, S.-K. Kim, M.-S. Jeong, K. Prabakar and H.-J. Kim, Korean J. Chem. Eng., 30, 2088 (2013).

    Article  CAS  Google Scholar 

  30. H. C. Kim, C. Yoon, Y.-G. Song, Y.-J. Kim and K. Lee, Korean J. Chem. Eng., 32, 563 (2015).

    Article  CAS  Google Scholar 

  31. P. Buffat and J. P. Borel, Phys. Rev. A, 13, 2287 (1976).

    Article  CAS  Google Scholar 

  32. Y. Li, Y. Wu and B. S. Ong, J. Am. Chem. Soc., 127, 3266 (2005).

    Article  CAS  Google Scholar 

  33. J. Janek, B. Mogwitz, G. Beck, M. Kreutzbruck, L. Kienle and C. Korte, Prog. Solid State Chem., 32, 179 (2004).

    Article  CAS  Google Scholar 

  34. H. Hiramatsu and F. E. Osterloh, Chem. Mater., 16, 2509 (2004).

    Article  CAS  Google Scholar 

  35. S. Sun and H. Zeng, J. Am. Chem. Soc., 124, 8204 (2002).

    Article  CAS  Google Scholar 

  36. S. Kumar and D. Kanjilal, Nucl. Instr. Meth. Phys. Res. B, 248, 109 (2006).

    Article  CAS  Google Scholar 

  37. X. Chen and S. S. Mao, Chem. Rev., 107, 2891 (2007).

    Article  CAS  Google Scholar 

  38. H. G. Bagaria, E. T. Ada, M. Shamsuzzoha, D. E. Nikeles and D. T. Johnson, Langmuir, 22, 7732 (2006).

    Article  CAS  Google Scholar 

  39. D. Q. Vo, E.-J. Kim and S. Kim, J. Colloid Interface Sci., 337, 75 (2009).

    Article  CAS  Google Scholar 

  40. J. Zhang, Y. Tang, L. Weng and M. Ouyang, Nano Lett., 9, 4061 (2009).

    Article  CAS  Google Scholar 

  41. M. Chen, Y.-G. Feng, X. Wang, T.-C. Li, J.-Y. Zhang and D.-J. Qian, Langmuir, 23, 5296 (2007).

    Article  CAS  Google Scholar 

  42. E. N. Kaufmann, Common concepts in materials characterization, Wiley, New York (2002).

    Book  Google Scholar 

  43. A. J. Morris-Cohen, M. T. Frederick, G. D. Lilly, E. A. McArthur and E. A. Weiss, J. Phys Chem. Lett., 1, 1078 (2010).

    Article  CAS  Google Scholar 

  44. A. A. Guzelian, J. E. B. Katari, A. V. Kadavanich, U. Banin, K. Humad, E. Juban, A. P. Alivisatos, R. H. Wolters, C. C. Arnold and J. R. Heath, J. Phys. Chem., 100, 7212 (1996).

    Article  CAS  Google Scholar 

  45. F. Yang, S. Xiong, Z. Xia, F. Liu, C. Han and D. Zhang, Semicond. Sci. Technol., 27, 125017 (2012).

    Article  CAS  Google Scholar 

  46. J. Jasieniak and P. Mulvaney, J. Am. Chem. Soc., 129, 2841 (2007).

    Article  CAS  Google Scholar 

  47. B. Mogwitz, C. Korte, J. Janek, M. V. Kreutzbruck and L. Kienle, J. Appl. Phys., 101, 043510 (2007).

    Article  CAS  Google Scholar 

  48. M. V. Kreutzbruck, G. Lembke, B. Mogwitz, C. Korte and J. Janek, J. Phys. Rev. B, 79, 035204 (2009).

    Article  CAS  Google Scholar 

  49. S. S. Monoharan, S. J. Prasanna, D. E. Kiwitz and C. M. Schneider, Phys. Rev. B, 63, 212405 (2001).

    Article  CAS  Google Scholar 

  50. L. J. Brillson, Contacts to semiconductors: fundamentals and technology, William Andrew Publishing, New York (1993).

    Google Scholar 

  51. R. Simon, R. C. Bourke and E. H. Lougher, Adv. Energy Convers., 3, 481 (2001).

    Article  Google Scholar 

  52. Y. Tang and M. Ouyang, Nat. Mater., 6, 754 (2007).

    Article  CAS  Google Scholar 

  53. T.-H. Gil, H.-S. Kim, J.-W. Lee and Y.-S. Kim, Solid-State Electron., 50, 1510 (2001).

    Article  CAS  Google Scholar 

  54. M. B. Reddy, A. A. Kumar, V. Janardhanam, V. R. Reddy and P. N. Reddy, Curr. Appl. Phys., 9, 972 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunwook Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vo, D.Q., Dung, D.D., Cho, S. et al. A simple synthesis of Ag2+x Se nanoparticles and their thin films for electronic device applications. Korean J. Chem. Eng. 33, 305–311 (2016). https://doi.org/10.1007/s11814-015-0141-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0141-8

Keywords

Navigation