Skip to main content
Log in

Hydrogen bond dynamics in liquid water: Ab initio molecular dynamics simulation

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The effect of intermolecular interaction on the distribution of the harmonic vibrational frequencies of water molecules was investigated through ab initio molecular dynamics simulations based on the Born-Oppenheimer approach. For single water, the effect of the dynamics of the oxygen atom in single water and the simulation time step on the frequency distribution were examined. The distributions of the OH stretching and HOH bending vibrational frequencies of liquid water were compared to those of single water. The probability distributions of the change in OH bond length and the lifetime of the dangling OH bond were also obtained. The distribution of the frequencies was strongly affected by the long lifetime of the dangling OH bond, resulting in the formation of hydrogen bonds between water molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Hashimoto, A.R. Choi, Y. Furutani, K.H. Jung and H. Kandori, Biochem., 49,3343(2010).

    Article  CAS  Google Scholar 

  2. U. Haupts, J. Tittor and D. Oesterhelt, Annu. Rev. Biophys. Biomol. Struct., 28,367(1999).

    Article  CAS  Google Scholar 

  3. H. Kandori, Y. Yamazaki, J. Sasaki, R. Needleman, J. K. Lanyi and A. Maeda, J. Am. Chem. Soc., 117,2118(1995).

    Article  CAS  Google Scholar 

  4. H. Kandori, Biochim. Biophys. Acta, 1460,177(2000).

    Article  CAS  Google Scholar 

  5. J. K. Lanyi, J. Struct., Bio., 124,164(1998).

    CAS  Google Scholar 

  6. H. Luecke, B. Schobert, H.T. Richter, J. P. Cartailler and J. K. Lanyi, J. Mol. Biol., 291,899(1999).

    Article  CAS  Google Scholar 

  7. A. Maeda, J. Sasaki, Y. Yamazaki, R. Needleman and J.K. Lanyi, Biochem., 33,1713(1994).

    Article  CAS  Google Scholar 

  8. J. Daniel, S. Solomon, R. Saunders, R. Portman, D. Miller and W. Madsen, J. Geophys. Res., 104,16785(1999).

    Article  Google Scholar 

  9. J. S. Daniel, S. Solomon, H. G. Kjaergaard and D. P. Schofield, Geophys. Res. Lett., 31, L06118 (2004).

  10. C. Hill and R. Jones, J. Geophys. Res., 31,9421(2000).

    Article  Google Scholar 

  11. F. Huisken, M. Kaloudis and A. Kulcke, J. Chem. Phys., 105,17(1996).

    Article  Google Scholar 

  12. H. Kandori and Y. Shichida, J. Am. Chem. Soc., 104,11745(2000).

    Article  CAS  Google Scholar 

  13. G.R. Low and H. G. Kjaergaard, J. Chem. Phys., 122,9104(1999).

    Article  CAS  Google Scholar 

  14. I.V. Ptashnik, K. M. Smith, K. P. Shine and D.A.Q. Newnham, J. R. Meteorol. Soc., 110,2391(2004).

    Article  Google Scholar 

  15. D. P. Schofield and H. G. Kjaergaard, Phys. Chem. Chem. Phys., 130,3100(2003).

    Article  CAS  Google Scholar 

  16. V. Vaida, J. Daniel, H.G. Kjaergaard, L.M. Goss and A. F. Q. Tuck, Meteorol. Soc., 5,1627(2001).

    Article  Google Scholar 

  17. W. S. Benedict, N. Gailar and E. K. Plyler, Chem. Phys. Lett., 127,1139(1956).

    Google Scholar 

  18. R. Bansil, T. Berger, M. A. R. Toukan and S. H. Chen, Chem. Phys. Lett., 24,165(1986).

    Article  Google Scholar 

  19. L. A. Curtiss and J. A. Pople, J. Mol. Spectros., 132,1(1975).

    Article  Google Scholar 

  20. J. Kim, J. Y. Lee, S. Lee, B. J. Mhin and K. S. Kim, J. Chem. Phys., 102,310(1995).

    Article  CAS  Google Scholar 

  21. N. Kumar, S. Neogi, P.R.C. Kent, A.V. Bandura, J.D. Kubicki, D. J. Wesolowski, D. Cole and J.O. Sofo, J. Phys. Chem. C, 113,13732(2009).

    Article  CAS  Google Scholar 

  22. R. Oder and D.A. I. Goring, Spectr. Acta Part A: Molecular Spectroscopy, 27,2285(1971).

    Article  CAS  Google Scholar 

  23. S. Palese, J.T. Buontempo, L. Schilling, W.T. Lotshaw, Y. Tanimura, S. Mukamel and R. J. D. Miller, J. Phys. Chem., 98,12466(1994).

    Article  CAS  Google Scholar 

  24. P. N. Perera, K.R. Fega, C. Lawrence, J. Tomlinson-Phillips and D. Ben-Amotz, P.N.A.S., 106,12230(2009).

    Article  Google Scholar 

  25. D. P. Schofield, J.R. Lane and H. G. Kjaergaqard, J. Phys. Chem. A, 111,567(2007).

    Article  CAS  Google Scholar 

  26. P. L. Silvestrelli, M. Bernasconi and M. Parrinello, Chem. Phys. Lett., 277,478(1997).

    Article  CAS  Google Scholar 

  27. L. Thrane, R. H. Jacobsen, P.U. Jepsen and S.R. Keiding, Chem. Phys. Lett., 240,330(1995).

    Article  CAS  Google Scholar 

  28. K.N. Woods and H. Wiedemann, Chem. Phys. Lett., 393,159(2004).

    Article  CAS  Google Scholar 

  29. J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing and J. Hutter, Comp. Phys. Comm., 167,103(2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Sun Yeom or Eunae Kim.

Additional information

This article is dedicated to Prof. Hwayong Kim on the occasion of his retirement from Seoul National University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, C., Yeom, M.S. & Kim, E. Hydrogen bond dynamics in liquid water: Ab initio molecular dynamics simulation. Korean J. Chem. Eng. 33, 255–259 (2016). https://doi.org/10.1007/s11814-015-0125-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0125-8

Keywords

Navigation