Skip to main content
Log in

Fabrication of bioanode by using electrically conducting polythiophene via entrapment technique

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A glassy carbon electrode (GCE) was tailored with conducting polymer polythiophene and further immobilized by an enzyme glucose oxidase (GOx). A thin film of polymer was developed by electrochemical polymerization of thiophene monomer. During electrochemical polymerization of the monomer the enzyme GOx and the redox active mediator ferritin (Frt) were entrapped within this polymer matrix. In this novel approach, the entrapment of enzyme and mediators within a polymer matrix occurs without chemical reaction that could affect their activity. The entrapment of enzyme and mediator within the conducting polymer matrices increases the surface area of the electrode. The tailored GCE/Ptp/Frt/GOx electrode showed a high catalytic activity. The increased surface area causes a high rate of electron transfer between the electrode and Frt engaged as an electron transfer mediator. The electrochemical properties of the electrode were determined by cyclic voltammetry (CV) and linear sweep voltammetry (LSV). The fabricated bioanode showed a current density of 3.9mA cm−2 at 1.0 V vs. Ag/AgCl in a 45 mM glucose solution and suggests proficient chances in biofuel cells (BFCs) applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Frank and H. P. J. Seamus, Biosens. Bioelectron., 22, 1224 (2007).

    Article  CAS  Google Scholar 

  2. R. A. Bullen, T. C. Arnot, J. B. Lakeman and F. C. Walsh, Biosens. Bioelectron., 21, 2015 (2006).

    Article  CAS  Google Scholar 

  3. E. Katz, A. Shipway and I. Willner, Handbook of fuel cells Fundamentals, Technology and Applications, Wiley, Jerusalem (2003).

    Google Scholar 

  4. A. K. Shukla, P. Suraish, S. Berchmans and A. Rajendran, Curr. Sci., 87, 455 (2004).

    CAS  Google Scholar 

  5. A. Elmekawy, S. Srikanth, K. Vanbroekhoven, H. D. Wever and D. Pant, J. Power. Source, 262, 183 (2014).

    Article  CAS  Google Scholar 

  6. M. Ghasemi, M. Ismail, S. K. Kamarudin, K. Saeedfar, W. R. W. Daud, S. H. A. Hassan, L. Y. Heng, J. Alam and S. E. Oh, Appl. Energy, 102, 1050 (2013).

    Article  CAS  Google Scholar 

  7. Y. Kim and B. E. Logan, Desalination, 308, 115 (2013).

    Article  CAS  Google Scholar 

  8. S. Sevda, X. Dominguez-Benetton, K. Vanbroekhoven, H. De Wever, T. R. Sreekrishnan and D. Pant, Appl. Energy, 105, 194 (2013).

    Article  CAS  Google Scholar 

  9. M. Rigla, M. E. Hernando, E. I. Gomez, E. Brugues, G. Garcia-Saez, I. Capel, B. Pons and A. Deleiva, Diabetes. Tech. Therapeut., 10, 194 (2008).

    Article  CAS  Google Scholar 

  10. A. Heller, Annu. Rev. Biomed. Eng., 1, 193 (1999).

    Article  Google Scholar 

  11. S. C. Barton, J. Gallaway and P. Atanassov, Chem. Rev., 104, 4867 (2004).

    Article  CAS  Google Scholar 

  12. A. Heller, Phys. Chem. Chem. Phys., 6, 209 (2004).

    Article  CAS  Google Scholar 

  13. W. Itamar, Fuel Cells., 9, 1 (2009).

    Google Scholar 

  14. A. T. Yahiro, S. M. Lee and D. O. Kimble, Biochim. Biophys. Acta, 88, 375 (1964).

    CAS  Google Scholar 

  15. X. Zhang, D. Pant, F. Zhang, J. liu, W. He and B. E. Logan, Chem. Electro. Chem., 1, 1859 (2014).

    CAS  Google Scholar 

  16. X. Dominguez-Benetton, S. Srikanth, Y. Satyawali, K. Vanbroekhoven and D. Pant, J. Microbial. Biochem. Technol. S6, 2, 20 (2013).

    Google Scholar 

  17. G. Ramsay and S. M. Wolper, Anal. Chem., 71, 504 (1999).

    Article  CAS  Google Scholar 

  18. K. Kojima, H. Nasu, M. Shimomura and S. Miyauchi, Synth. Met., 71, 2245 (1995).

    Article  CAS  Google Scholar 

  19. L. Shi, Y. Xiao and I. Willner, Electrochem. Commun., 6, 1057 (2004).

    Article  CAS  Google Scholar 

  20. T. Kuwahara, K. Oshima, M. Shimomura and S. Miyauchi, Polymer, 46, 8091 (2005).

    Article  CAS  Google Scholar 

  21. S. U. Lee, K. Jung, G. W. Park, C. Seo, Y. K. Hong, W. H. Hong and H. N. Chang, Korean J. Chem. Eng., 29, 831 (2012).

    Article  CAS  Google Scholar 

  22. F. Barrière, Y. Ferry, D. Rochefort and D. Leech, Electrochem. Commun., 6, 237 (2004).

    Article  CAS  Google Scholar 

  23. V. Soukharev, N. Mano and A. Heller, J. Am. Chem. Soc., 126, 8368 (2004).

    Article  CAS  Google Scholar 

  24. F. Sato, M. Togo, M. K. Islam, T. Matsue, J. Kosuge, N. Fukasaru, S. Kurosawa and M. Nishizawa, Electrochem. Commun., 7, 643 (2005).

    Article  CAS  Google Scholar 

  25. P. D. Hale, T. Inagaki, H. I. Karan, T. Okamoto and T. A. Skotheim, J. Am. Chem. Soc., 111, 3482 (1989).

    Article  CAS  Google Scholar 

  26. K. Nakano, K. Doi, K. Tamura, Y. Katsumi and M. Tazaki, Chem. Commun., 13, 1544 (2003).

    Article  CAS  Google Scholar 

  27. I. Willner, V. Heleg-Shabtai, R. Blonder, E. Katz, G. Tao, A. F. Buckmann and A. Heller, J. Am. Chem. Soc., 118, 10321 (1996).

    Article  CAS  Google Scholar 

  28. Y. Xiao, F. Patolsky, E. Katz, J. F. Hainfeld and I. Willner, Science, 299, 1877 (2003).

    Article  CAS  Google Scholar 

  29. S. C. Wang, F. Yang, M. Silva, A. Zarow, Y. B. Wang and Z. Iqbal, Electrochem. Commun., 11, 34 (2009).

    Article  CAS  Google Scholar 

  30. Y. M. Tan, W. F. Deng, B. Ge, Q. J. Xie, J. H. Huang and S. Z. Yao, Biosens. Bioelectron., 24, 2225 (2009).

    Article  CAS  Google Scholar 

  31. J. M. Pingarron, P. Yanez-Sedeno and A. Gonzalez-Cortes, Electrochim. Acta, 53, 5848 (2008).

    Article  CAS  Google Scholar 

  32. L. S. Wong, J. L. Thirlway and J. Micklefield, J. Am. Chem. Soc., 130, 12546 (2008).

    Google Scholar 

  33. P. Bernfeld and J. Wan, Science, 142, 678 (1963).

    Article  CAS  Google Scholar 

  34. D. Brady and A. Jordan, Biotechol. Lett., 31, 1639 (2009).

    Article  CAS  Google Scholar 

  35. S. M. Jo, Y. Xia, H. Y. Lee, Y. C. Kim and J. C. Kim, Korean J. Chem. Eng., 25, 1221 (2008).

    Article  CAS  Google Scholar 

  36. P. N. Bartlett and J. M. Cooper, Electroanal. Chem., 362, 1 (1993).

    Article  CAS  Google Scholar 

  37. P. N. Bartlett and P. R. Birkin, Synth. Met., 61, 15 (1993).

    Article  CAS  Google Scholar 

  38. B. D. Malhotra, A. Chaubey and S. P. Singh, Anal. Chim. Acta, 578, 59 (2006).

    Article  CAS  Google Scholar 

  39. A. Ramanavicius, A. Ramanaviciene and A. Malinauskas, Electrochim. Acta, 51, 6025 (2006).

    Article  CAS  Google Scholar 

  40. I. C. Kwon, Y. H. Bae and S. W. Kim, Nature, 28, 291 (1991).

    Article  Google Scholar 

  41. S. D. Minteer, B. Y. L. Liaw and M. J. Cooney, Curr. Opin. Biotechnol., 18, 228 (2007).

    Article  CAS  Google Scholar 

  42. S. Cosnier, D. Shan and S. N. Ding, Electrochem. Commun., 12, 266 (2010).

    Article  CAS  Google Scholar 

  43. K. M. Shin, G. D. Watt, B. Zhang, J. N. Harb, R. G. Harrison, S. I. Kim and S. J. Kim, J. Electroanal. Chem., 598, 22 (2006).

    Article  CAS  Google Scholar 

  44. E. Nazaruk, S. Smolinski, M. Swatko-Ossor, G. Ginalska, J. Fiedurek, J. Rogalski and R. Bilewicz, J. Power Sourc., 183, 533 (2008).

    Article  CAS  Google Scholar 

  45. G. Merie, A. Habrioux, K. Servat, M. Rolland, C. Innocent, K. B. Kokoh and S. Tingry, Electrochim. Acta, 54, 2998 (2009).

    Article  CAS  Google Scholar 

  46. N. Mano, F. Mao and A. Heller, J. Electroanal. Chem., 574, 347 (2005).

    Article  CAS  Google Scholar 

  47. V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker and S. Seal, Prog. Mater. Sci., 56, 1178 (2011).

    Article  CAS  Google Scholar 

  48. C. Agnes, B. Reuillard, A. L. Goff, M. Holzinger and S. Cosnier, Electrochem. Commun., 34, 105 (2013).

    Article  CAS  Google Scholar 

  49. A. Inamuddin, K. M. Shin, S. I. Kim, I. So and S. J. Kim, Electrochim. Acta, 54, 3979 (2009).

    Article  CAS  Google Scholar 

  50. A. Inamuddin, K. Ahmad and M. Naushad, Int. J. Hydrogen Energy, 39, 7417 (2014).

    Article  CAS  Google Scholar 

  51. K. M. Shin, J. W Lee, G. G. Wallace and S. J. Kim, Sens. Actuators B., 133, 393 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inamuddin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inamuddin, Beenish & Naushad, M. Fabrication of bioanode by using electrically conducting polythiophene via entrapment technique. Korean J. Chem. Eng. 33, 120–125 (2016). https://doi.org/10.1007/s11814-015-0116-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0116-9

Keywords

Navigation