Korean Journal of Chemical Engineering

, Volume 33, Issue 1, pp 189–196 | Cite as

Electrochemical degradation of the Acid Orange 10 dye on a Ti/PbO2 anode assessed by response surface methodology

  • Gholamreza Bonyadinejad
  • Mansour Sarafraz
  • Mohsen Khosravi
  • Afshin EbrahimiEmail author
  • Seyed Mahmood Taghavi-Shahri
  • Roya Nateghi
  • Sedighe Rastaghi
Environmental Engineering


The decolorization and degradation of the synthetic aqueous solution of the Acid Orange 10 (AO10) dye on Ti/PbO2 anode were investigated using the response surface methodology based on central composite design with three variables: current density, pH, and supporting electrolyte concentration. The Ti/PbO2 electrode was prepared by the electrochemical deposition method. The optimum conditions for AO10 decolorization in synthetic dye solution were electrolyte concentration of 117.04 mM, pH of 12.05, and current density of 73.64 mA cm−2. The results indicated that the most effective factor for AO10 degradation was current density. Furthermore, the color removal efficiency significantly increased with increasing current density. To measure AO10 mineralization under optimum conditions, the chemical oxygen demand (COD) and total organic carbon (TOC) removal were evaluated. Under these conditions, decolorization was completed and 63% removal was recorded for COD and 60% for TOC after 100 min of electrolysis.


Electrochemical Degradation Ti/PbO2 Acid Orange 10 Response Surface Methodology Central Composite Design 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. B. dos Santos, F. J. Cervantes and J. B. van Lier, Bioresour. Technol., 98, 2369 (2007).CrossRefGoogle Scholar
  2. 2.
    S. Mondal, Environ. Eng. Sci., 25, 383 (2008).CrossRefGoogle Scholar
  3. 3.
    N. Jovic-Jovicic, A. Milutinovic-Nikolic, P. Bankovic, Z. Mojovic, M. Žunic, I. Gržetic and D. Jovanovic, Appl. Clay Sci., 47, 452 (2010).CrossRefGoogle Scholar
  4. 4.
    M. H. Entezari, Z. S. Al-Hoseini and N. Ashraf, Ultrason. Sonochem., 15, 433 (2008).CrossRefGoogle Scholar
  5. 5.
    S. Meriç, D. Kaptan and T. Ölmez, Chemosphere, 54, 435 (2004).CrossRefGoogle Scholar
  6. 6.
    R. Saratale, G. Saratale, J. Chang and S. Govindwar, J. Taiwan Inst. Chem. Eng., 42, 138 (2011).CrossRefGoogle Scholar
  7. 7.
    X. R. Xu and X. Z. Li, Sep. Purif. Technol., 72, 105 (2010).CrossRefGoogle Scholar
  8. 8.
    N. Benselka-Hadj Abdelkader, A. Bentouami, Z. Derriche, N. Bettahar and L. C. De Menorval, Chem. Eng. J., 169, 231 (2011).CrossRefGoogle Scholar
  9. 9.
    A. K. Giri, A. Mukherjee, G. Talukder and A. Sharma, Toxicol. Lett., 44, 253 (1988).CrossRefGoogle Scholar
  10. 10.
    S. P. Sun, C. J. Li, J. H. Sun, S. H. Shi, M. H. Fan and Q. Zhou, J. Hazard. Mater., 161, 1052 (2009).CrossRefGoogle Scholar
  11. 11.
    C. A. Martínez-Huitle and E. Brillas, Appl. Catal. B-Environ., 87, 105 (2009).CrossRefGoogle Scholar
  12. 12.
    S. Raghu and C. A. Basha, J. Hazard. Mater., 139, 381 (2007).CrossRefGoogle Scholar
  13. 13.
    J. D. Rodgers, W. Jedral and N. J. Bunce, Environ. Sci. Technol., 33, 1453 (1999).CrossRefGoogle Scholar
  14. 14.
    D. Rajkumar, B. J. Song and J. G. Kim, Dyes Pigm., 72, (2007).Google Scholar
  15. 15.
    H. Xu, A. P. Li, Q. Qi, W. Jiang and Y. M. Sun, Korean J. Chem. Eng., 29, 1178 (2012).CrossRefGoogle Scholar
  16. 16.
    J. M. Aquino, G. F. Pereira, R. C. Rocha-Filho, N. Bocchi and S. R. Biaggio, J. Hazard. Mater., 192, 1275 (2011).CrossRefGoogle Scholar
  17. 17.
    O. J. Murphy, G. Duncan Hitchens, L. Kaba and C. E. Verostko, Water Res., 26, 443 (1992).CrossRefGoogle Scholar
  18. 18.
    A. Vlyssides, M. Loizidou, P. Karlis, A. Zorpas and D. Papaioannou, J. Hazard. Mater., 70, 41 (1999).CrossRefGoogle Scholar
  19. 19.
    J. Wang, R. P. Deo, P. Poulin and M. Mangey, J. Am. Chem. Soc., 125, 14706 (2003).CrossRefGoogle Scholar
  20. 20.
    P. A. Carneiro, M. E. Osugi, C. I. S. Fugivara, N. Boralle, M. Furlan and M. V. B. Zanoni, Chemosphere, 59, 431 (2005).CrossRefGoogle Scholar
  21. 21.
    M. Sanroman, M. Pazos, M. Ricart and C. Cameselle, Chemosphere, 57, 233 (2004).CrossRefGoogle Scholar
  22. 22.
    Y. Xiong, P. J. Strunk, H. Xia, X. Zhu and H. T. Karlsson, Water Res., 35, 4226 (2001).CrossRefGoogle Scholar
  23. 23.
    V. Santos, A. Morão, M. J. Pacheco, L. Ciríaco and A. Lopes, J. Environ. Eng. Manage., 18, 193 (2008).Google Scholar
  24. 24.
    J. Cao, H. Zhao, F. Cao, J. Zhang and C. Cao, Electrochim. Acta, 54, 2595 (2009).CrossRefGoogle Scholar
  25. 25.
    C. Comninellis and G. Chen, Electrochemistry for the Environment, Springer (2010).CrossRefGoogle Scholar
  26. 26.
    M. Panizza and G. Cerisola, Chem. Rev., 109, 6541 (2009).CrossRefGoogle Scholar
  27. 27.
    E. M. Siedlecka, S. Stolte, M. Golebiowski, A. Nienstedt, P. Stepnowski and J. Thöming, Sep. Purif. Technol., 101, 26 (2012).CrossRefGoogle Scholar
  28. 28.
    K. Radha, V. Sridevi, K. Kalaivani and M. Raj, Desalin. Water Treat., 7, 6 (2009).CrossRefGoogle Scholar
  29. 29.
    L. S. Andrade, T. T. Tasso, D.L. da Silva, R. C. Rocha-Filho, N. Bocchi and S. R. Biaggio, Electrochim. Acta, 54, 2024 (2009).CrossRefGoogle Scholar
  30. 30.
    D. C. Montgomery, Design and analysis of experiments, 7th Ed., John Wiley & Sons, New York (2009).Google Scholar
  31. 31.
    J. M. Aquino, R. C. Rocha-Filho, N. Bocchi and S. R. Biaggio, J. Environ. Chem. Eng., 1, 954 (2013).CrossRefGoogle Scholar
  32. 32.
    A. Fernandes, A. Morao, M. Magrinho, A. Lopes and I. Gonçalves, Dyes Pigm., 61, 287 (2004).CrossRefGoogle Scholar
  33. 33.
    A. Polcaro, S. Palmas, F. Renoldi and M. Mascia, J. Appl. Electrochem., 29, 147 (1999).CrossRefGoogle Scholar
  34. 34.
    A. Del Río, M. Benimeli, J. Molina, J. Bonastre and F. Cases, Int. J. Electrochem. Sci., 7, 13074 (2012).Google Scholar
  35. 35.
    N. A. Ghalwa, M. Gaber, A. M. Khedr and M. F. Salem, Int. J. Electrochem. Sci., 7, 6044 (2012).Google Scholar
  36. 36.
    L. Xu, Z. Guo, L. Du and J. He, Electrochim. Acta, 97, 150 (2013).CrossRefGoogle Scholar
  37. 37.
    R. H. Myers, D. C. Montgomery and C. M. Anderson-Cook, Response surface methodology: Process and product optimization using designed experiments, Wiley (2009).Google Scholar
  38. 38.
    T. W. Anderson and D. A. Darling, J. Am. Stat. Assoc., 49, 765 (1954).CrossRefGoogle Scholar
  39. 39.
    T. S. Breusch and A. R. Pagan, Econometrica, 47, 1287 (1979).CrossRefGoogle Scholar
  40. 40.
    J. Durbin and G. S. Watson, Biometrika, 37, 409 (1950).Google Scholar
  41. 41.
    J. Durbin and G. S. Watson, Biometrika, 38, 159 (1951).CrossRefGoogle Scholar
  42. 42.
    B. Efron and G. Gong, Am. Stat., 37, 36 (1983).Google Scholar
  43. 43.
    M. H. Kutner, C. Nachtsheim and J. Neter, Applied linear regression models, McGraw-Hill/Irwin (2004).Google Scholar
  44. 44.
    C. Zhang, Y. Jiang, Y. Li, Z. Hu, L. Zhou and M. Zhou, Chem. Eng. J., 228, 455 (2013).CrossRefGoogle Scholar
  45. 45.
    Q. Dai, H. Shen, Y. Xia, F. Chen, J. Wang and J. Chen, Sep. Purif. Technol., 104, 9 (2013).CrossRefGoogle Scholar
  46. 46.
    J. Niu, D. Maharana, J. Xu, Z. Chai and Y. Bao, J. Environ. Sci., 25, 1424 (2013).CrossRefGoogle Scholar
  47. 47.
    C. Zhong, K. Wei, W. Han, L. Wang, X. Sun and J. Li, J. Electroanal. Chem., 705, 68 (2013).CrossRefGoogle Scholar
  48. 48.
    M. Zhou and J. He, J. Hazard. Mater., 153, 357 (2008).CrossRefGoogle Scholar
  49. 49.
    N. Djafarzadeh, M. Safarpour and A. Khataee, Korean J. Chem. Eng., 31, 785 (2014).CrossRefGoogle Scholar
  50. 50.
    J. Niu, Y. Bao, Y. Li and Z. Chai, Chemosphere, 92, 1571 (2013).CrossRefGoogle Scholar
  51. 51.
    D. Shao, J. Liang, X. Cui, H. Xu and W. Yan, Chem. Eng. J., 244, 288 (2014).CrossRefGoogle Scholar
  52. 52.
    E. Alvarez-Guerra, A. Dominguez-Ramos and A. Irabien, Chem. Eng. Res. Des., 89, 2679 (2011).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2016

Authors and Affiliations

  • Gholamreza Bonyadinejad
    • 1
  • Mansour Sarafraz
    • 1
  • Mohsen Khosravi
    • 2
  • Afshin Ebrahimi
    • 1
    Email author
  • Seyed Mahmood Taghavi-Shahri
    • 3
  • Roya Nateghi
    • 1
  • Sedighe Rastaghi
    • 4
  1. 1.Environment Research Center and Department of Environmental Health Engineering, School of HealthIsfahan University of Medical SciencesIsfahanIran
  2. 2.Nanotechnology DepartmentUniversity of IsfahanIsfahanIran
  3. 3.Research Center for Environmental PollutantsQom University of Medical SciencesQomIran
  4. 4.Department of Epidemiology and Biostatistics, School of HealthIsfahan University of Medical SciencesIsfahanIran

Personalised recommendations