Skip to main content

Advertisement

Log in

Ash deposition characteristics of Moolarben coal and its blends during coal combustion

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We report a systematic and comprehensive laboratory investigation of the ash deposition behavior of Moolarben (MO) coal, which has recently begun to be imported into Korea. Ash deposition experiments were conducted in a drop tube reactor, and a water-cooled ash deposit probe was inserted into the reactor to affix the ash. The tests were conducted using five types of single coals (two bituminous and three sub-bituminous, including MO coal) and blended coals (bituminous coal blended with sub-bituminous coal). Two indices represent ash deposition behavior: capture efficiency and energy-based growth rate. A thermomechanical analysis evaluated the melting behavior of the resulting ash deposits. The MO coal had the least ash deposition of the single coals due to its high melting temperature, indicated by high ash silica content. Indonesian sub-bituminous coals formed larger ash deposits and were sticky at low temperatures due to relatively high alkali content. However, blends with MO coal had greater ash deposition than blends with other bituminous coals. This non-additive behavior of MO coal blends is likely due to interactions between ash particles. Coals with higher silica content more effectively retain alkali species, resulting in lower melting temperatures and larger ash deposits. Therefore, we recommend that when blending in a boiler, silica-rich coals (SiO2>80%, SiO2/Al2O3> 5) should be blended with relatively low-alkali coals (Na2O+K2O<3%), and the blending ratio of the silica-rich coals indicates less than 10%, which can safely operate the boiler.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Lee, J. Huang, Y. Fang and Y. Wang, Korean J. Chem. Eng., 30(3),605(2013).

    Article  CAS  Google Scholar 

  2. G. Yuan, J. Zhang, Y. Zhang, Y. Yan, X. Ju and J. Sun, Korean J. Chem. Eng., 32(3),436(2015).

    Article  CAS  Google Scholar 

  3. R.W. Bryers, Prog. Energy Combust. Sci., 22,29(1996).

    Article  CAS  Google Scholar 

  4. B.T. Reg, The assessment of fouling and slagging propensity in combustion systems, in: S. A. Benson (Ed.), Proceedings of the Engineering Foundation Conference on Inorganic Transformations and Ash Deposition during Combustion in Palm Coast, Florida, March, 10–499(1992).

    Google Scholar 

  5. D.H. Scott, Ash Behavior During Combustion and Gasification, IEA Coal Research: London (1999).

    Google Scholar 

  6. D. L. Bull, Ash deposition: A utility perspective, in: S. A. Benson (Ed.), Proceedings of the Engineering Foundation Conference on Inorganic Transformations and Ash Deposition during Combustion, March 10-15,121(1992).

    Google Scholar 

  7. N. V. Russell, F. Wigley and J. Williamson, Fuel, 81,673(2002).

    Article  CAS  Google Scholar 

  8. A. Rushdi, A. Sharma and R. Gupta, Fuel, 83,495(2004).

    Article  CAS  Google Scholar 

  9. J. Barroso, J. Ballester, L.M. Ferrer and S. Jiménez, Fuel Process. Technol., 87,737(2006).

    Article  CAS  Google Scholar 

  10. B.H. Lee, S. G. Kim, J. H. Song, Y. J. Chang and C. H. Jeon, Energy Fuels, 25,5055(2011).

    Article  CAS  Google Scholar 

  11. R. Blanchard, Measurements and modeling of coal ash deposition in an entrained flow reactor, MS Thesis. Brigham Young University, Provo (2008).

    Google Scholar 

  12. S. Vargas, F. J. Frandsen and K.D. Johansen, Prog. Energy Combust. Sci., 27,237(2001).

    Article  CAS  Google Scholar 

  13. J.D. Watt and F. Fereday, Journal of the Institute of Fuel, 42,99(1969).

    CAS  Google Scholar 

  14. M. Seggiani, Fuel, 77,1611(1998).

    Article  CAS  Google Scholar 

  15. L. Zhang and S. Jahanshahi, Scandinavian Journal of Metallurgy, 30,364(2001).

    Article  CAS  Google Scholar 

  16. T.F. Wall, R.A. Creelman, R.P. Gupta, S.K. Gupta, C. Coin and A. Lowe, Prog. Energy Combust. Sci., 24,345(1998).

    Article  CAS  Google Scholar 

  17. L. Zhang and S. Jahanshahi, Scand. J. Metall., 30,364(2001).

    Article  CAS  Google Scholar 

  18. N. Hiroshi, I. Nobuya, K. Takayuki, T. Tsuyoshi, I. Tadashi, I. Yoshiaki, Y. Ryo and N. Ichiro, Proceedings of the Combustion Institute, 32,2709(2009).

    Article  CAS  Google Scholar 

  19. A.R. McLennen, G.W. Bryant, C.W. Bailey, B. R. Stanmore and T. F. Wall, Energy Fuels, 14,349(2000).

    Article  CAS  Google Scholar 

  20. G. J. Browning, G.W. Bryant, H. J. Hurst, J.A. Lucas and T. F. Wall, Energy Fuel, 17,731(2003).

    Article  CAS  Google Scholar 

  21. O. Holger and M. Michael, Energy Fuels, 21,3240(2007).

    Article  CAS  Google Scholar 

  22. W. Hao, S.B. Muhammad, A. J. Peter, S. Bo and G. Peter, Fuel, 113,632(2013).

    Article  CAS  Google Scholar 

  23. T.F. Wall, R.A. Creelman, R.P. Gupta, S.K. Gupta, C. Coin and A. Lowe, Prog. Energy Combust. Sci., 24,345(1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Hwan Jeon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, BH., Kim, SI., Kim, SM. et al. Ash deposition characteristics of Moolarben coal and its blends during coal combustion. Korean J. Chem. Eng. 33, 147–153 (2016). https://doi.org/10.1007/s11814-015-0108-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0108-9

Keywords

Navigation