Skip to main content
Log in

Separation of CO2 from flue gases using hydroquinone clathrate compounds

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Hydroquinone (HQ) samples reacting with (CO2+N2) gas mixtures with various compositions at pressures ranging from 10 to 50 bar are analyzed using spectroscopic methods and an elemental analyzer. The results indicate that while both CO2 and N2 can react with HQ to form clathrate compounds, CO2 has higher selectivity than N2. In particular, at an operating pressure of 20 bar or greater, the CO2 content in the clathrate compound is 85mol% or higher regardless of the feed gas composition. Moreover, if a two-step clathrate-based process is adapted, CO2 at a rate of 93 mol% or higher can be recovered from flue gases. Thus, the clathrate compound described here can be used as a CO2 separation/recovery medium for CO2 in flue gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.D. Sloan and C. A. Koh, Clathrate hydrates of natural gases, CRC Press, Boca Raton, FL (2008).

    Google Scholar 

  2. E. G. Hammerschmidt, Ind. Eng. Chem., 26, 851 (1934).

    Article  CAS  Google Scholar 

  3. J. Seol and H. Lee, Korean J. Chem. Eng., 30, 771 (2013).

    Article  CAS  Google Scholar 

  4. S.-P. Kang and H. Lee, Environ. Sci. Technol., 34, 4397 (2000).

    Article  CAS  Google Scholar 

  5. Y.-T. Seo, S.-P. Kang, H. Lee, C.-S. Lee and W.-M. Sung, Korean J. Chem. Eng., 17, 659 (2000).

    Article  CAS  Google Scholar 

  6. M.T. Ho, G. Leamon, G.W. Allinson and D. E. Wiley, Ind. Eng. Chem. Res., 45, 2546 (2006).

    Article  CAS  Google Scholar 

  7. H. Yang, Z. Xu, M. Fan, R. Gupta, R.B. Slimane, A. E. Bland and I. Wright, J. Environ. Sci., 20, 14 (2008).

    Article  CAS  Google Scholar 

  8. S. Ahn, H.-J. Song, J.-W. Park, J. H. Lee, I.Y. Lee and K.-R. Jang, Korean J. Chem. Eng., 27, 1576 (2010).

    Article  CAS  Google Scholar 

  9. T.-H. Bae, J.S. Lee, W. Qiu, W. J. Koros, C.W. Jones and S. Nair, Angew. Chem. Int. Ed., 49, 9863 (2010).

    Article  CAS  Google Scholar 

  10. H. G. Jin, S. H. Han, Y. M. Lee and Y.K. Yeo, Korean J. Chem. Eng., 28, 41 (2011).

    Article  CAS  Google Scholar 

  11. E. S. Kikkinides, R.T. Yang and S. H. Cho, Ind. Eng. Chem. Res., 32, 2714 (1993).

    Article  CAS  Google Scholar 

  12. K.T. Chue, J.N. Kim, Y. J. Yoo, S.H. Cho and R.T. Yang, Ind. Eng. Chem. Res., 34, 591 (1995).

    Article  CAS  Google Scholar 

  13. B.-K. Na, K.-K. Koo, H.-M. Eum, H. Lee and H. K. Song, Korean J. Chem. Eng., 18, 220 (2001).

    Article  CAS  Google Scholar 

  14. M. Binns, S.-Y. Oh, D.-H. Kwak and J.-K. Kim, Korean J. Chem. Eng., 32, 383 (2015).

    Article  CAS  Google Scholar 

  15. B. ZareNezhad, M. Mottahedin and F. Varaminian, Korean J. Chem. Eng., 30, 2248 (2013).

    Article  CAS  Google Scholar 

  16. J.-W. Lee, Y. Lee, S. Takeya, T. Kawamura, Y. Yamamoto, Y.-J. Lee and J.-H. Yoon, J. Phys. Chem. B, 114, 3254 (2010).

    Article  CAS  Google Scholar 

  17. J.-W. Lee, K. J. Choi, Y. Lee and J.-H. Yoon, Chem. Phys. Lett., 528, 34 (2012).

    Article  CAS  Google Scholar 

  18. J. A. Ripmeester, Chem. Phys. Lett., 74, 536 (1980).

    Article  CAS  Google Scholar 

  19. J. L. Atwood, J. E. D. Davies and D. D. MacNicol, Inclusion compounds, Academic Press, Orlando, FL (1984).

    Google Scholar 

  20. M. Kubinyi, F. Billes, A. Grofcsik and G. Keresztury, J. Mol. Struct., 266, 339 (1992).

    Article  CAS  Google Scholar 

  21. J.-I. Ida and Y. S. Lin, Environ. Sci. Technol., 37, 1999 (2003).

    Article  CAS  Google Scholar 

  22. Y. Ding and E. Alpay, Chem. Eng. Sci., 55, 3461 (2000).

    Article  CAS  Google Scholar 

  23. J. M. Smith, H. C.V. Ness and M.M. Abbott, Introduction to chemical engineering thermodynamics, McGraw-Hill Companies Inc., New York (2005).

    Google Scholar 

  24. J. M. Prausnitz, R. N. Lichtenthaler and E. G. d. Azevedo, Molecular thermodynamics of fluid-phase equilibria, Prentice-Hall, Englewood Cliffs, NJ (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Ho Yoon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, JW., Dotel, P., Park, J. et al. Separation of CO2 from flue gases using hydroquinone clathrate compounds. Korean J. Chem. Eng. 32, 2507–2511 (2015). https://doi.org/10.1007/s11814-015-0101-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0101-3

Keywords

Navigation