Skip to main content
Log in

Next generation digital microfluidic technology: Electrophoresis of charged droplets

  • Invited Review Paper
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Contact charging of a conducting droplet in a dielectric medium is introduced as a novel and useful digital microfluidic technology as well as an interesting scientific phenomenon. The history of this phenomenon, starting from original observations to its interpretations and applications, is presented. The basic principle of the droplet contact charging is also presented. Several fundamental aspects of the droplet contact charging from view points of electrochemistry, surface science, electrocoalescence, and electrohydrodynamics are mentioned. Some promising results for future applications and potential features as a next generation digital microfluidic technology are discussed, especially for 3D organ printing. Finally, implications and significance of the proposed technology for chemical engineering community are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. S. Eow and M. Ghadiri, Chem. Eng. Process., 42, 259 (2003).

    CAS  Google Scholar 

  2. M. Hase, S.N. Watanabe and K. Yoshikawa, Phys. Rev. E, 74, 046301 (2006).

    Google Scholar 

  3. Y. M. Jung, H. C. Oh and I. S. Kang, J. Colloid Interface Sci., 322, 617 (2008).

    CAS  Google Scholar 

  4. D. J. Im, J. Noh, D. Moon and I. S. Kang, Anal. Chem., 83, 5168 (2011).

    CAS  Google Scholar 

  5. B. Vajdi Hokmabad, B. Sadri, M. R. Charan and E. Esmaeilzadeh, Colloids Surf., A, 401, 17 (2012).

    CAS  Google Scholar 

  6. M. Takinoue, Y. Atsumi and K. Yoshikawa, Appl. Phys. Lett., 96, 104105 (2010).

    Google Scholar 

  7. R. Mukhopadhyay, Anal. Chem., 78, 1401 (2006).

    Google Scholar 

  8. M. Washizu, IEEE T. Ind. Appl., 34, 732 (1998).

    CAS  Google Scholar 

  9. M. G. Pollack, R. B. Fair and A.D. Shenderov, Appl. Phys. Lett., 77, 1725 (2000).

    CAS  Google Scholar 

  10. J. Lee, H. Moon, J. Fowler, T. Schoellhammer and C. J. Kim, Sens. Actuators, A, 95, 259 (2002).

    CAS  Google Scholar 

  11. M. Abdelgawad and A. R. Wheeler, Adv. Mater., 21, 920 (2009).

    CAS  Google Scholar 

  12. M. J. Jebrail and A. R. Wheeler, Curr. Opin. Chem. Biol., 14, 574 (2010).

    CAS  Google Scholar 

  13. O. D. Velev, B. G. Prevo and K. H. Bhatt, Nature, 426, 515 (2003).

    CAS  Google Scholar 

  14. P. R. C. Gascoyne, J. V. Vykoukal, J. A. Schwartz, T. J. Anderson, D. M. Vykoukal, K. W. Current, C. McConaghy, F. F. Becker and C. Andrews, Lab Chip, 4, 299 (2004).

    CAS  Google Scholar 

  15. T. P. Hunt, D. Issadore and R. M. Westervelt, Lab Chip, 8, 81 (2008).

    CAS  Google Scholar 

  16. D. Issadore, T. Franke, K. A. Brown, T. P. Hunt and R.M. Westervelt, J. Microelectromech. Syst., 18, 1220 (2009).

    Google Scholar 

  17. Y. J. Zhao, U. C. Yi and S. K. Cho, J. Microelectromech. S, 16, 1472 (2007).

    CAS  Google Scholar 

  18. D. Issadore, K. J. Humphry, K. A. Brown, L. Sandberg, D. A. Weitz and R.M. Westervelt, Lab Chip, 9, 1701 (2009).

    CAS  Google Scholar 

  19. T.B. Jones, J.D. Fowler, Y. S. Chang and C. J. Kim, Langmuir, 19, 7646 (2003).

    CAS  Google Scholar 

  20. C. A. Cartier, A. M. Drews and K. J. M. Bishop, Lab Chip, 14, 4230 (2014).

    CAS  Google Scholar 

  21. Y. M. Jung and I. S. Kang, Biomicrofluidics, 3, 022402 (2009).

    Google Scholar 

  22. Y. M. Jung and I. S. Kang, Biomicrofluidics, 4, 024104 (2010).

    Google Scholar 

  23. D. J. Im, B. S. Yoo, M.M. Ahn, D. Moon and I. S. Kang, Anal. Chem., 85, 4038 (2013).

    CAS  Google Scholar 

  24. Y. M. Jung, H. C. Oh and I. S. Kang, J. Colloid Interface Sci., 322, 617 (2008).

    CAS  Google Scholar 

  25. T. B. Jones, Langmuir, 18, 4437 (2002).

    CAS  Google Scholar 

  26. K. H. Kang, Langmuir, 18, 10318 (2002).

    CAS  Google Scholar 

  27. D. J. Im and I. S. Kang, J. Colloid Interface Sci., 266, 127 (2003).

    CAS  Google Scholar 

  28. J. Zeng and T. Korsmeyer, Lab Chip, 4, 265 (2004).

    CAS  Google Scholar 

  29. P. M. Young and K. Mohseni, J. Fluid Eng.-T Asme, 130, 081603 (2008).

    Google Scholar 

  30. D. R. Link, E. Grasland-Mongrain, A. Duri, F. Sarrazin, Z.D. Cheng, G. Cristobal, M. Marquez and D.A. Weitz, Angew. Chem. Int. Ed., 45, 2556 (2006).

    CAS  Google Scholar 

  31. X. Z. Niu, F. Gielen, A. J. deMello and J.B. Edel, Anal. Chem., 81, 7321 (2009).

    CAS  Google Scholar 

  32. A. R. Thiam, N. Bremond and J. Bibette, Phys. Rev. Lett., 102, 188304 (2009).

    Google Scholar 

  33. W. D. Ristenpart, J. C. Bird, A. Belmonte, F. Dollar and H. A. Stone, Nature, 461, 377 (2009).

    CAS  Google Scholar 

  34. F. Mugele, Nature, 461, 356 (2009).

    CAS  Google Scholar 

  35. D.R. Link, E. Grasland-Mongrain, A. Duri, F. Sarrazin, Z. Cheng, G. Cristobal, M. Marquez and D.A. Weitz, Angew. Chem. Int. Ed., 45, 2556 (2006).

    CAS  Google Scholar 

  36. X. Niu, F. Gielen, A. J. DeMello and J. B. Edel, Anal. Chem., 81, 7321 (2009).

    CAS  Google Scholar 

  37. B. Ahn, K. Lee, R. Panchapakesan and K. W. Oh, Biomicrofluidics, 5, 024113 (2011).

    Google Scholar 

  38. F. Guo, X. H. Ji, K. Liu, R. X. He, L. B. Zhao, Z. X. Guo, W. Liu, S. S. Guo and X. Z. Zhao, Appl. Phys. Lett., 96, 193701 (2010).

    Google Scholar 

  39. W. Wang, C. Yang, Y. Liu and C. M. Li, Lab Chip, 10, 559 (2010).

    Google Scholar 

  40. H. T. Ochs and R. R. Czys, Nature, 327, 606 (1987).

    CAS  Google Scholar 

  41. W.D. Ristenpart, J. C. Bird, A. Belmonte, F. Dollar and H. A. Stone, Nature, 461, 377 (2009).

    CAS  Google Scholar 

  42. J. S. Eow and M. Ghadiri, Chem. Eng. J., 85, 357 (2002).

    CAS  Google Scholar 

  43. J.S. Eow, M. Ghadiri, A.O. Sharif and T. J. Williams, Chem. Eng. J., 84, 173 (2001).

    CAS  Google Scholar 

  44. L. Zheng, Z.-H. Lin, G. Cheng, W. Wu, X. Wen, S. Lee and Z. L. Wang, Nano Energy, 9, 291 (2014).

    CAS  Google Scholar 

  45. Z.-H. Lin, G. Cheng, W. Wu, K. C. Pradel and Z. L. Wang, ACS Nano, 8, 6440 (2014).

    CAS  Google Scholar 

  46. Z.-H. Lin, G Cheng, S. Lee, K. C. Pradel and Z. L. Wang, Adv. Mater., 26, 4690 (2014).

    CAS  Google Scholar 

  47. S.-H. Kwon, J. Park, W. K. Kim, Y. Yang, E. Lee, C. J. Han, S.Y. Park, J. Lee and Y. S. Kim, Energy Environ. Sci., 7, 3279 (2014).

    CAS  Google Scholar 

  48. G. Cheng, Z.-H. Lin, Z.-l. Du and Z. L. Wang, ACS Nano, 8, 1932 (2014).

    CAS  Google Scholar 

  49. Z.-H. Lin, G. Cheng, L. Lin, S. Lee and Z. L. Wang, Angew. Chem. Int. Ed., 52, 12545 (2013).

    CAS  Google Scholar 

  50. D. Choi, H. Lee, D. J. Im, I. S. Kang, G. Lim, D. S. Kim and K.H. Kang, Sci. Rep.-Uk, 3, 2037 (2013).

    Google Scholar 

  51. P. Nemes, I. Marginean and A. Vertes, Anal. Chem., 79, 3105 (2007).

    CAS  Google Scholar 

  52. D. B. Hager, N. J. Dovichi, J. Klassen and P. Kebarle, Anal. Chem., 66, 3944 (1994).

    CAS  Google Scholar 

  53. R.T. Kelly, J. S. Page, I. Marginean, K. Tang and R.D. Smith, Anal. Chem., 80, 5660 (2008).

    CAS  Google Scholar 

  54. A. Venter, P. E. Sojka and R. G. Cooks, Anal. Chem., 78, 8549 (2006).

    CAS  Google Scholar 

  55. H.T. Yudistira, V.D. Nguyen, S. B.Q. Tran, T. S. Kang, J. K. Park and D. Byun, Appl. Phys. Lett., 98, 083501 (2011).

    Google Scholar 

  56. J.U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J.G. Georgiadis, P. M. Ferreira and J. A. Rogers, Nat. Mater., 6, 782 (2007).

    CAS  Google Scholar 

  57. D.W. Lee, D. J. Im and I. S. Kang, J. Phys. Chem. C, 117, 3426 (2013).

    CAS  Google Scholar 

  58. M. M. Ahn, D. J. Im, J. G. Kim, D. W. Lee and I. S. Kang, J. Phys. Chem. Lett., 5, 3021 (2014).

    CAS  Google Scholar 

  59. G. Quincke, Pogg. Ann., 113, 513 (1861).

    Google Scholar 

  60. R. A. Millikan, Phys. Rev., 2, 109 (1913).

    CAS  Google Scholar 

  61. J. C. Carruthers, Trans. Faraday Soc., 34, 300 (1938).

    CAS  Google Scholar 

  62. W. Dickinson, Trans. Faraday Soc., 37, 140 (1941).

    CAS  Google Scholar 

  63. A. J. Taylor and F. W. Wood, Trans. Faraday Soc., 53, 523 (1957).

    CAS  Google Scholar 

  64. K. G. Marinova, R. G. Alargova, N.D. Denkov, O.D. Velev, D. N.Petsev, I. B. Ivanov and R.P. Borwankar, Langmuir, 12, 2045 (1996).

    CAS  Google Scholar 

  65. J. K. Beattie and A. M. Djerdjev, Angew. Chem. Int. Ed., 43, 3568 (2004).

    CAS  Google Scholar 

  66. A. M. Schoeler, D. N. Josephides, S. Sajjadi, C. D. Lorenz and P. Mesquida, J. Appl. Phys., 114, 144903 (2013).

    Google Scholar 

  67. T. Mochizuki, Y. H. Mori and N. Kaji, AIChE J., 36, 1039 (1990).

    CAS  Google Scholar 

  68. A. Khayari and A. T. Perez, IEEE T. Dielec. Elec. Insul., 9, 589 (2002).

    Google Scholar 

  69. D.R. Link, E. Grasland-Mongrain, A. Duri, F. Sarrazin, Z. Cheng, G. Cristobal, M. Marquez and D.A. Weitz, Angew. Chem. Int. Ed., 45, 2556 (2006).

    CAS  Google Scholar 

  70. Y. M. Jung and I. S. Kang, Biomicrofluidics, 4 (2010).

  71. Y. M. Jung and I. S. Kang, Biomicrofluidics, 3, 22402 (2009).

    Google Scholar 

  72. T. Liu, S. Seiffert, J. Thiele, A.R. Abate, D.A. Weitz and W. Richtering, Proc. Natl. Acad. Sci. U. S. A., 109, 384 (2012).

    CAS  Google Scholar 

  73. J. C. Bird, W. D. Ristenpart, A. Belmonte and H. A. Stone, Phys. Rev. Lett., 103, 164502 (2009).

    Google Scholar 

  74. Y. Z. Zhang, Y. H. Liu, X. L. Wang, Y. Shen, R. J. Ji and B.P. Cai, Langmuir, 29, 1676 (2013).

    CAS  Google Scholar 

  75. A. M. Drews, H.-Y. Lee and K. J. M. Bishop, Lab Chip, 13, 4295 (2013).

    CAS  Google Scholar 

  76. D. W. Lee, D. J. Im and I. S. Kang, Appl. Phys. Lett., 100, 221602 (2012).

    Google Scholar 

  77. C. P. Lee, H. C. Chang and Z. H. Wei, Appl. Phys. Lett., 101, 014103 (2012).

    Google Scholar 

  78. D. J. Im, M. M. Ahn, B. S. Yoo, D. Moon, D. W. Lee and I. S. Kang, Langmuir, 28, 11656 (2012).

    CAS  Google Scholar 

  79. B. S. Hamlin and W. D. Ristenpart, Phys. Fluids, 24, 012101 (2012).

    Google Scholar 

  80. B. Khorshidi, M. Jalaal, E. Esmaeilzadeh and F. Mohammadi, J. Colloid Interface Sci., 352, 211 (2010).

    CAS  Google Scholar 

  81. M. Jalaal, B. Khorshidi and E. Esmaeilzadeh, Exp. Therm. Fluid Sci., 34, 1498 (2010).

    CAS  Google Scholar 

  82. S. Mhatre and R. M. Thaokar, Phys. Fluids, 25, 072105 (2013).

    Google Scholar 

  83. P. Rezai, S. Salam, P. R. Selvaganapathy and B. P. Gupta., Lab Chip, 12, 1831 (2012).

    CAS  Google Scholar 

  84. B. Ahn, K. Lee, R. Panchapakesan and K. W. Oh, Biomicrofluidics, 5, 024113 (2011).

    Google Scholar 

  85. W. Wang, C. Yang, Y. Liu and C. M. Li, Lab Chip, 10, 559 (2010).

    Google Scholar 

  86. H. Zhou and S. Yao, Lab Chip, 13, 962 (2013).

    CAS  Google Scholar 

  87. K. Choi, M. Im, J.-M. Choi and Y.-K. Choi, Microfluid. Nanofluid., 12, 821 (2012).

    CAS  Google Scholar 

  88. M. M. Ahn, D. J. Im and I. S. Kang, Analyst, 138, 7362 (2013).

    CAS  Google Scholar 

  89. D. J. Im, J. Noh, N.W. Yi, J. Park and I. S. Kang, Biomicrofluidics, 5, 044112 (2011).

    Google Scholar 

  90. A. T. Pérez, J. Electrostat., 56, 199 (2002).

    Google Scholar 

  91. N. Felici, Rev. Gen. Elect., 75, 1145 (1966).

    Google Scholar 

  92. D. W. Lee, D. J. Im and I. S. Kang, Langmuir, 29, 1875 (2013).

    CAS  Google Scholar 

  93. A. M. Schoeler, D. N. Josephides, S. Sajjadi and P. Mesquida, Colloids Surf., A, 461, 18 (2014).

    CAS  Google Scholar 

  94. A. M. Schoeler, D. N. Josephides, A. S. Chaurasia, S. Sajjadi and P. Mesquida, Appl. Phys. Lett., 104, 074104 (2014).

    Google Scholar 

  95. S. -B. Jeon, D. Kim, G. -W. Yoon, J. -B. Yoon and Y. -K. Choi, Nano Energy, 12, 636 (2015).

    CAS  Google Scholar 

  96. J. C. Baygents and D.A. Saville, J. Chem. Soc., Faraday Trans., 87, 1883 (1991).

    CAS  Google Scholar 

  97. S. M. Lee, D. J. Im and I. S. Kang, Phys. Fluids, 12, 1899 (2000).

    CAS  Google Scholar 

  98. G. I. Taylor, Proc. R. Soc. London Ser A., 291, 159 (1964).

    Google Scholar 

  99. D. Moon, D. J. Im, S. Lee and I. S. Kang, Exp. Therm. Fluid Sci., 53, 251 (2014).

    Google Scholar 

  100. H. T. Yudistira, V. D. Nguyen, P. Dutta and D. Byun, Appl. Phys. Lett., 96, 023503 (2010).

    Google Scholar 

  101. S. Levine and R. N. O’Brien, J. Colloid Interface Sci., 43, 616 (1973).

    CAS  Google Scholar 

  102. C. D. Hendricks, J. Colloid Sci., 17, 249 (1962).

    CAS  Google Scholar 

  103. C. J. Hogan, P. Biswas and D.-r. Chen, J. Phys. Chem. B, 113, 970 (2009).

    CAS  Google Scholar 

  104. J.G. Kim, D. J. Im, Y. M. Jung and I. S. Kang, J. Colloid Interface Sci., 310, 599 (2007).

    CAS  Google Scholar 

  105. P. Beránek, R. Flittner, V. Hrobar, P. Ethgen and M. Pribyl, AIP Advances, 4, 067103 (2014).

    Google Scholar 

  106. A. M. Drews, M. Kowalik and K. J. M. Bishop, J. Appl. Phys., 116, 074903 (2014).

    Google Scholar 

  107. A. M. Drews, C. A. Cartier and K. J. M. Bishop, Langmuir, 31, 3808 (2015).

    CAS  Google Scholar 

  108. B. S. Lee, H.-J. Cho, J.-G. Lee, N. Huh, J.-W. Choi and I. S. Kang, J. Colloid Interface Sci., 302, 294 (2006).

    CAS  Google Scholar 

  109. A. Abbott, Nature, 424, 870 (2003).

    CAS  Google Scholar 

  110. Y.-C. Tung, A. Y. Hsiao, S. G. Allen, Y.-s. Torisawa, M. Ho and S. Takayama, Analyst, 136, 473 (2011).

    CAS  Google Scholar 

  111. A. E. M. Seiler and H. Spielmann, Nat. Protocols, 6, 961 (2011).

    CAS  Google Scholar 

  112. J. Clausell-Tormos, D. Lieber, J.-C. Baret, A. El-Harrak, O. J. Miller, L. Frenz, J. Blouwolff, K. J. Humphry, S. Köster, H. Duan, C. Holtze, D. A. Weitz, A. D. Griffiths and C.A. Merten, Chem. Biol., 15, 427 (2008).

    CAS  Google Scholar 

  113. G. Villar, A. D. Graham and H. Bayley, Science, 340, 48 (2013).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Do Jin Im.

Additional information

This article is dedicated to Prof. Hwayong Kim on the occasion of his retirement from Seoul National Univerisity.

Do Jin Im is a Professor in the Department of Chemical Engineering at Pukyong National University in Korea. He received his B.S. degree (POSTECH, Korea), M.S. degree (POSTECH, Korea), and Ph.D. degree (POSTECH) all in Chemical Engineering and was a postdoctoral fellow at POSTECH. He worked for several years at the Samsung Corning Precision Glass, Co Ltd and worked at POSTECH as a research assistant Professor before joining Pukyong National University in 2014. His research interests include Droplet Contact Charging Phenomena, Droplet Microfluidics, Biomicrofluidics, Bio-Engineering, 3D Organ printing, Transport Phenomena, Numerical Modeling, Electrostatics, and Electrokinetics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Im, D.J. Next generation digital microfluidic technology: Electrophoresis of charged droplets. Korean J. Chem. Eng. 32, 1001–1008 (2015). https://doi.org/10.1007/s11814-015-0092-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0092-0

Keywords

Navigation