Skip to main content

Enhancement of lipid production in marine microalga Tetraselmis sp. through salinity variation

Abstract

The objective of this study was to enhance the lipid productivity in microalga Tetraselmis sp. through the salinity variation during cultivation. When marine alga Tetraselmis sp. was cultivated in a wide range of salinities, 0 through 70 practical salinity unit (PSU), enriched with F/2 medium, relatively low salinities below 35 PSU resulted in higher growth rates and lipid productivities under both N-deficient and -sufficient conditions, as compared to high salinities above 45 PSU. Nitrogen limitation did not stimulate lipid production in this species. Although high salinity increased lipid content, overall lipid productivities were lowered than those under low salinity conditions due to the decreased biomass production. When the salinity shifted from 35 to 22 PSU during cultivation, total lipid content increased from 20 to 26 (w/w) % within four days, and no significant change of fatty acids composition was observed.

This is a preview of subscription content, access via your institution.

References

  1. J. K. Kim, B.-H. Um and T. H. Kim, Korean J. Chem. Eng., 29, 209 (2012).

    Article  CAS  Google Scholar 

  2. M. J. Asadollahzadeh, M. Ardjmand, A. A. Seafkordi and S. M. Heydarian, Korean J. Chem. Eng., 31, 1425 (2014).

    Article  CAS  Google Scholar 

  3. G. Kim, W. Choi and K. Lee, Biochem. Eng. J., 78, 18 (2013).

    Article  CAS  Google Scholar 

  4. H. M. Amaro, A. C. Guedes and F. X. Malcata, Appl. Energy, 88, 3402 (2011).

    Article  CAS  Google Scholar 

  5. G. Kim, G. Mujtaba, R. Muhamad and K. Lee, Appl. Chem. Eng., 25, 553 (2014).

    Article  CAS  Google Scholar 

  6. E. Suali and R. Sarbatly, Renew. Sust. Energ. Rev., 16, 4316 (2012).

    Article  CAS  Google Scholar 

  7. G. Mujtaba, W. Choi, C. Lee and K. Lee, Bioresour. Technol., 123, 279 (2012).

    Article  CAS  Google Scholar 

  8. L. Rodolfi, G. C. Zittelli, N. Bassi, G. Padovani, N. Biondi, G. Bonini and M. R. Tredici, Biotechnol. Bioeng., 102, 100 (2009).

    Article  CAS  Google Scholar 

  9. M. Chen, H. Tang, H. Ma, T. C. Holland, K. Y. Simon Ng and S. O. Salley, Bioresour. Technol., 102, 1649 (2011).

    Article  CAS  Google Scholar 

  10. S. V. Mohan and M. P. Devi, Bioresour. Technol., 165, 288 (2014).

    Article  CAS  Google Scholar 

  11. M. L. Bartley, W. J. Boeing, A. A. Corcoran, F. O. Holguin and T. Schaub, Biomass Bioenergy, 54, 83 (2013).

    Article  CAS  Google Scholar 

  12. P. Kaewkannetra, P. Enmak and T. Chiu, Biotechnol. Bioprocess Eng., 17, 591 (2012).

    Article  CAS  Google Scholar 

  13. Q. Hu, M. Sommerfeld, E. Jarvis, M. Ghirardi, M. Posewitz, M. Seibert and A. Darzins, Plant J., 52, 621 (2008).

    Article  CAS  Google Scholar 

  14. S. H. Ho, C. Y. Chen and J. S. Chang, Bioresour. Technol., 113, 244 (2012).

    Article  CAS  Google Scholar 

  15. G. Breuer, P. P. Lamers, D. E. Martens, R. B. Draaisma and R. H. Wijffels, Bioresour. Technol., 124, 217 (2012).

    Article  CAS  Google Scholar 

  16. R. Huerlimann, R. Nys and K. Heimann, Biotechnol. Bioeng., 107, 245 (2010).

    Article  CAS  Google Scholar 

  17. C. G. Lee and D. H. Sung, Korean Patent (Pending) 10-2012-0085961 (2012).

    Google Scholar 

  18. C. Yao, J. Ai, X. Cao, S. Xue and W. Zhang, Bioresour. Technol., 118, 438 (2012).

    Article  CAS  Google Scholar 

  19. P. Bondioli, L. D. Bella, G. Rivolta, G. C. Zittelli, N. Bassi, L. Rodolfi, D. Casini, M. Prussi, D. Chiaramonti and M. R. Tredici, Bioresour. Technol., 114, 567 (2012).

    Article  CAS  Google Scholar 

  20. C. J. Zhu and Y. K. Lee, J. Appl. Phycol., 9, 189 (1997).

    Article  Google Scholar 

  21. E. G. Bligh and W. J. Dyer, Can. J. Biochem. Physiol., 37, 911 (1959).

    Article  CAS  Google Scholar 

  22. S. V. Wychen and L. M. L. Laurens, Determination of total lipids as fatty acid methyl esters (FAME) by in situ transesterification, Laboratory Analytical Procedure, NREL, USA (2013).

    Book  Google Scholar 

  23. M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers and F. Smith, Anal. Chem., 28, 350 (1956).

    Article  CAS  Google Scholar 

  24. Y. Jiang and F. Chen, J. Ind. Microbiol. Biotechnol., 23, 508 (1999).

    Article  CAS  Google Scholar 

  25. G. O. Kirst, Ann. Rev. Plant Biol., 41, 21 (1990).

    Article  CAS  Google Scholar 

  26. G. Q. Chen, Y. Jiang and F. Chen, J. Phycol., 44, 1309 (2008).

    Article  CAS  Google Scholar 

  27. H. W. Yen, I. C. Hu, C. Y. Chen and J. S. Chang, Design of photobioreactors for algal cultivation, In: A. Pandey, D. J. Lee, Y. Chisti and C. R. Soccol (Eds.), Biofuels from Algae, Elsevier, Burlington (2014).

  28. M. Takagi, Karseno and T. Yoshida, J. Biosci. Bioeng., 101, 223 (2006).

    Article  CAS  Google Scholar 

  29. P. C. Gorain, S. K. Bagchi and N. Mallick, Environ. Technol., 34, 1887 (2013).

    Article  CAS  Google Scholar 

  30. L. Zhu, X. Zhang, L. Ji, X. Song and C. Kuang, Process Biochem., 42, 210 (2007).

    Article  CAS  Google Scholar 

  31. M. Azachi, A. Sadka, M. Fisher, P. Goldshlad, I. Gokhman and A. Zamir, Plant Physiol., 129, 1320 (2002).

    Article  CAS  Google Scholar 

  32. E. G. Linda, M. G. James and W. W. Lee, Algae. 2nd Ed., Pearson (2009).

    Google Scholar 

  33. A. J. Klok, P. P. Lamers, D. E. Martens, R. B. Draaisma and R. R. Wiffels, Trends Biotechnol., 32, 521 (2014).

    Article  CAS  Google Scholar 

  34. W. Q. Xu and J. Beardall, Phytochemistry, 45, 655 (1997).

    Article  CAS  Google Scholar 

  35. S. M. Renaud and D. L. Parry, J. Appl. Phycol., 6, 347 (1994).

    Article  CAS  Google Scholar 

  36. D. Pal, I. Khozin-Goldberg, Z. Cohen and S. Boussiba, Appl. Microbiol. Biotechnol., 90, 1429 (2011).

    Article  CAS  Google Scholar 

  37. M. Xiao, H.-J. Shin and Q. Dong, Korean J. Chem. Eng., 30, 2119 (2013).

    Article  CAS  Google Scholar 

  38. H. Tang, N. Abunasser, M. E. D. Garcia, M. Chen, K. Y. Simon Ng and S. O. Sally, Appl. Energy, 88, 3324 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kisay Lee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, G., Lee, CH. & Lee, K. Enhancement of lipid production in marine microalga Tetraselmis sp. through salinity variation. Korean J. Chem. Eng. 33, 230–237 (2016). https://doi.org/10.1007/s11814-015-0089-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0089-8

Keywords

  • Microalgae
  • Tetraselmis
  • Lipid Production
  • Salinity Shift
  • Biodiesel