Skip to main content
Log in

Novel perpendicularly cross-rectangular CuO architectures: Controlled synthesis, enhanced photocatalytic activity and catalytic thermal-decomposition of NH4ClO4

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Novel perpendicularly cross-rectangular CuO architectures have been successfully fabricated on a large scale by a facile microwave-assisted chemical aqueous route. The as-synthesized CuO products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), high resolution transmission electron microscopy (HRTEM) and UV-vis absorption spectroscopy. An individual CuO microstructure is mainly assembled by two rectangle-shaped nanosheets with different sizes, which is perpendicularly intersected through the center. A possible formation mechanism of perpendicularly cross-rectangular CuO architectures was proposed based on the comparative experimental results. The prepared CuO nanoarchitectures exhibited excellent photocatalytic activity for the decolorization of Rhodamine B (RhB) under visible light irradiation. Simultaneously, the prepared CuO products, acting as an additive, also showed effective catalytic activity on the thermal decomposition of ammonium perchlorate (NH4ClO4).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.Q. Yan, R.R. He, J. Pham and P.D. Yang, Adv. Mater., 15, 402 (2003).

    Article  CAS  Google Scholar 

  2. C. Z. Yuan, X. G. Zhang, L. H. Su and L. F. Shen, J. Mater. Chem., 19, 5772 (2009).

    Article  CAS  Google Scholar 

  3. H. Jiang, T. Zhao, C.Y. Yan, J. Ma and C. Z. Li, Nanoscale, 2, 2195 (2010).

    Article  CAS  Google Scholar 

  4. X. L. Hu, J. C. Yu, J. M. Gong, Q. Li and G. S. Li, Adv. Mater., 19, 2324 (2007).

    Article  CAS  Google Scholar 

  5. X.W. Lou, D. Deng, J.Y. Lee and L.A. Archer, J. Mater. Chem., 18, 4397 (2008).

    Article  CAS  Google Scholar 

  6. X. Wang, C. G. Hu, H. Liu, G. J. Du, X. S. He and Y. Xi, Sens. Actuat. B-Chem., 144, 220 (2010).

    Article  CAS  Google Scholar 

  7. U.R. Pillai and S. Deevi, Appl. Catal. B-Environ., 64, 146 (2006).

    Article  CAS  Google Scholar 

  8. R.V. Kumar, Y. Diamant and A. Gedanken, Chem. Mater., 12, 2301 (2000).

    Article  CAS  Google Scholar 

  9. J. H. Schon, M. Dorget, F.C. Beuran, X. Z. Zu, E. Arushanov, C.D. Cavellin and M. Lagues, Nature, 414, 434 (2001).

    Article  CAS  Google Scholar 

  10. X.P. Gao, J.L. Bao, G.L. Pan, H.Y. Zhu, P.X. Huang, F. Wu and D. Y. Song, J. Phys. Chem. B, 108, 5547 (2004).

    Article  CAS  Google Scholar 

  11. Y.W. Zhu, T. Yu, F.C. Cheong, X. J. Xu, C. T. Lim, V.B.C. Tan, J. T. L. Thong and C. H. Sow, Nanotechnology, 16, 88 (2005).

    Article  CAS  Google Scholar 

  12. F. Bakhtiari and E. Darezereshki, Mater. Lett., 65, 171 (2011).

    Article  CAS  Google Scholar 

  13. S. Sonia, N.D. Jayram, P. S. Kumar, D. Mangalaraj, N. Ponpandian and C. Viswanathan, Superlattices Microstruct., 66, 1 (2014).

    Article  CAS  Google Scholar 

  14. W. Z. Wang, Y. Zhuang and L. Li, Mater. Lett., 62, 1724 (2008).

    Article  CAS  Google Scholar 

  15. X. J. Zhang, G. F. Wang, X.W. Liu and H.Q. Wu, Mater. Chem. Phys., 112, 726 (2008).

    Article  CAS  Google Scholar 

  16. X.Q. Wang, G.C. Xi, S.L. Xiong, Y.K. Liu, B. J. Xi, W.C. Yu and Y. T. Qian, Cryst. Growth Des., 7, 930 (2007).

    Article  CAS  Google Scholar 

  17. C. H. Deng, H. M. Hu, X.Q. Ge, C. L. Han and B. H. Yang, J. Nanosci. Nanotechnol., 12, 3150 (2012).

    Article  CAS  Google Scholar 

  18. M. R. Kim, S. J. Kim and D. J. Jang, Cryst. Growth Des., 10, 257 (2010).

    Article  CAS  Google Scholar 

  19. S. Krishnan, A. S. M. A. Haseeb and M.R. Johan, J. Nanopart. Res., 15, 1410 (2013).

    Article  Google Scholar 

  20. Y.Y. Hu, X.T. Huang, K. Wang, J.P. Liu, J. Jiang, R.M. Ding, X.X. Ji and X. Li, J. Solid State Chem., 183, 662 (2010).

    Article  CAS  Google Scholar 

  21. G.F. Zou, H. Li, D.W. Zhang, K. Xiong, C. Dong and Y.T. Qian, J. Phys. Chem. B, 110, 1632 (2006).

    Article  CAS  Google Scholar 

  22. Y. L. Yu and J. Y. Zhang, Mater. Lett., 63, 1840 (2009).

    Article  CAS  Google Scholar 

  23. G. Chen, H. F. Zhou, W. Ma, D. Zhang, G. Z. Qiu and X. H. Liu, Solid State Sci., 13, 2137 (2011).

    Article  CAS  Google Scholar 

  24. J.Y. Li, S.L. Xiong, B. J. Xi, X.G. Li and Y.T. Qian, Cryst. Growth Des., 9, 4108 (2009).

    Article  CAS  Google Scholar 

  25. W.X. Zhang, M. Li, Q. Wang, G.D. Chen, M. Kong and Z.H. Yang, Adv. Funct. Mater., 21, 3516 (2011).

    Article  CAS  Google Scholar 

  26. H.X. Shi, Y.X. Zhao, N. Li, K. Wang, X. Hua, M.D. Chen and F. Teng, Catal. Commun., 47, 7 (2014).

    Article  CAS  Google Scholar 

  27. Z.H. Ai, W. K. Ho, S.C. Lee and L. Z. Zhang, Environ. Sci. Technol., 43, 4143 (2009).

    Article  CAS  Google Scholar 

  28. C. H. Deng and X. B. Tian, Mater. Res. Bull., 48, 4344 (2009).

    Article  Google Scholar 

  29. S. Zaman, A. Zainelabdin, G. Amin, O. Nur and M. Willander, J. Phys. Chem. Solids, 73, 1320 (2012).

    Article  CAS  Google Scholar 

  30. P.W.M. Jacobs and H.M. Whitehead, Chem. Rev., 69, 551 (1969).

    Article  CAS  Google Scholar 

  31. Y.Y. Xu, D.R. Chen, X.L. Jiao and K.Y. Xue, Mater. Res. Bull., 42, 1723 (2007).

    Article  CAS  Google Scholar 

  32. P.R. Patil, V.N. Krishnamurthy and S. S. Joshi, Propell. Explos. Pyrot., 33, 266 (2008).

    Article  CAS  Google Scholar 

  33. S.Y. Yang, C. F. Wang, L. Chen and S. Chen, Mater. Chem. Phys., 120, 296 (2010).

    Article  CAS  Google Scholar 

  34. L. J. Chen, L. P. Li and G. S. Li, J. Alloy. Comp., 464, 532 (2008).

    Article  CAS  Google Scholar 

  35. C. Yang, F. Xiao, J.D. Wang and X.T. Su, J. Colloid Interface Sci., 435, 34 (2014).

    Article  CAS  Google Scholar 

  36. E. Alizadeh-Gheshlaghi, B. Shaabani, A. Khodayari, Y. Azizian-Kalandaragh and R. Rahimi, Powder Technol., 217, 330 (2012).

    Article  CAS  Google Scholar 

  37. C. Yang, J.D. Wang, F. Xiao and X.T. Su, Powder Technol., 264, 36 (2014).

    Article  CAS  Google Scholar 

  38. V. V. Boldyrev, Thermochim. Acta, 443, 1 (2006).

    Article  CAS  Google Scholar 

  39. J. Z. Yin, Z. H. Sheng, W. G. Zhang, Y. Zhang, H. Zhong, R.Q. Li, Z. J. Jiang and X. F. Wang, Mater. Lett., 131, 317 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hanmei Hu or Chonghai Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Ge, X., Zheng, Q. et al. Novel perpendicularly cross-rectangular CuO architectures: Controlled synthesis, enhanced photocatalytic activity and catalytic thermal-decomposition of NH4ClO4 . Korean J. Chem. Eng. 32, 2335–2341 (2015). https://doi.org/10.1007/s11814-015-0070-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0070-6

Keywords

Navigation