Skip to main content
Log in

Simple boron removal from seawater by using polyols as complexing agents: A computational mechanistic study

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The complexation of boric acid (B(OH)3), the primary form of aqueous boron at moderate pH, with polyols is proposed and mechanistically studied as an efficient way to improve membrane processes such as reverse osmosis (RO) for removing boron in seawater by increasing the size of aqueous boron compounds. Computational chemistry based on the density functional theory (DFT) was used to manifest the reaction pathways of the complexation of B(OH)3 with various polyols such as glycerol, xylitol, and mannitol. The reaction energies were calculated as −80.6, −98.1, and −87.2 kcal/mol for glycerol, xylitol, and mannitol, respectively, indicating that xylitol is the most thermodynamically favorable for the complexation with B(OH)3. Moreover, the 1: 2 molar ratio of B(OH)3 to polyol was found to be more favorable than the ratio of 1: 1 for the complexation. Meanwhile, latest lab-scale actual RO experiments successfully supported our computational prediction that 2 moles of xylitol are the most effective as the complexing agent for 1 mole of B(OH)3 in aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Le. Tu, L.D. Nghiem and A. Chivas, Sep. Purif. Technol., 75(2), 87 (2010).

    Article  CAS  Google Scholar 

  2. H. I. Shaban, Separ. Purif. Method, 19, 121 (1990).

    Article  CAS  Google Scholar 

  3. A.D. Khawaji, I. K. Kutubkhanah and J.-M. Wie, Desalination, 221, 47 (2008).

    Article  CAS  Google Scholar 

  4. K. P. Lee, T.C. Arnot and D. Mattia, J. Membr. Sci., 370, 1 (2011).

    Article  CAS  Google Scholar 

  5. J. Redondo, M. Busch and J. P. De Witte, Desalination, 156, 229 (2003).

    Article  CAS  Google Scholar 

  6. A. Sagiv and R. Semiat, J. Membr. Sci., 243, 79 (2004).

    Article  CAS  Google Scholar 

  7. WHO, Guidelines for Drinking Water Quality, WHO, Geneva (1998).

    Google Scholar 

  8. P. Glueckstern and M. Priel, Desalination, 156, 219 (2003).

    Article  CAS  Google Scholar 

  9. L. F. Greenlee, D. F. Lawler, B.D. Freeman, B. Marrot and P. Moulin, Water Res., 43, 2317 (2009).

    Article  CAS  Google Scholar 

  10. N. Geffen, R. Semiat, M. S. Eisen, Y. Balazs, I. Katz and C.G. Dosoretz, J. Membr. Sci., 286, 45 (2006).

    Article  CAS  Google Scholar 

  11. P. Dydo, I. Nems and M. Turek, Sep. Purif. Technol., 89, 171 (2012).

    Article  CAS  Google Scholar 

  12. S. Chapelle, J.-F. Stella and J. F. Verchere, Tetrahedron, 44, 4469 (1988).

    Article  CAS  Google Scholar 

  13. N. Kabay, M. Bryjak, S. Schlosser, M. Kitis, S. Avlonitis, Z. Matejka, I. Al-Mutaz and M. Yuksel, Desalination, 223, 38 (2008).

    Article  CAS  Google Scholar 

  14. C. L. Mehltretter, F. B. Wekly and C. A. Wilham, Ind. Eng. Chem. Prod. Res. Dev., 3, 145 (1964).

    Google Scholar 

  15. S. Yasuda and H. Yamauchi, Nippon Kagaku Kaishi, 4, 752 (1987).

    Article  Google Scholar 

  16. Gaussian 09W, Revision C.01, M. J. Frisch, G.W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Rob, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A.D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A.D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez and J. A. Pople, Gaussian, Inc., Wallingford CT (2004).

    Google Scholar 

  17. S. Grimme, J. Comput. Chem., 27, 1787 (2006).

    Article  CAS  Google Scholar 

  18. A.D. Becke, J. Chem. Phys., 98, 5648 (1993).

    Article  CAS  Google Scholar 

  19. R. Ditchfield, W. J. Herhe and J.A. Pople, J. Chem. Phys., 54, 724 (1971).

    Article  CAS  Google Scholar 

  20. Y. S. Won, Korean J. Chem. Eng., 29, 1438 (2012).

    Article  CAS  Google Scholar 

  21. Y. S. Won, Korean J. Chem. Eng., 31, 2077 (2014).

    Article  CAS  Google Scholar 

  22. X. Li and M. J. Frisch, J. Chem. Theory Comput., 2, 835 (2006).

    Article  CAS  Google Scholar 

  23. M.S. Rayson, M. Altarawneh, J. C. Mackie, E.M. Kennedy and B. Z. Dlugogorski, J. Phys. Chem. A, 114, 2597 (2010).

    Article  CAS  Google Scholar 

  24. J. Tomasi, B. Mennucci and R. Cammi, Chem. Rev., 105, 2999 (2005).

    Article  CAS  Google Scholar 

  25. G. Jeong, J.H. Jung, J.H. Lim, Y. S. Won and J.K. Lee, J. Chem. Eng. Jpn., 47, 225 (2014).

    Article  CAS  Google Scholar 

  26. B. S. Park, M. S. Kim and S. H. Kim, CESE Conference, Malaysia (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Sun Won.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, MK., Eom, K.H., Lim, JH. et al. Simple boron removal from seawater by using polyols as complexing agents: A computational mechanistic study. Korean J. Chem. Eng. 32, 2330–2334 (2015). https://doi.org/10.1007/s11814-015-0060-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0060-8

Keywords

Navigation