Advertisement

Korean Journal of Chemical Engineering

, Volume 32, Issue 10, pp 2109–2115 | Cite as

Enhanced adsorptive performance of tetracycline antibiotics on lanthanum modified diatomite

  • Guoting Li
  • Yanmin Feng
  • Weiyong Zhu
  • Xiwang Zhang
Separation Technology, Thermodynamics

Abstract

A natural mineral diatomite was modified with lanthanum species using an ion exchange process to improve its adsorption performance for tetracycline removal. The prepared lanthanum-modified diatomite was characterized by scanning electron microscopy, X-ray diffractometry and Fourier transform infrared spectroscopy. The results showed that lanthanum was successfully immobilized onto diatomite, with a content of lanthanum element of about 1.5% (atomic ratio). The prepared adsorbent was evaluated for the adsorptive removal of tetracycline, and the adsorption isotherm, kinetics and mechanism were investigated. The adsorbent exhibited higher adsorption capacity than other adsorbents reported in literature, reaching 1056.9 mmol/kg. Langmuir model better fitted the experimental data than did other models. The removal of tetracycline was favorable at near neutral pH conditions. The tetracycline adsorption well followed pseudo-second-order kinetics model, and most of tetracycline was adsorbed within the initial 15 min. The increase in ionic strength reduced the tetracycline adsorptive removal, indicating that tetracycline adsorption on La-modified diatomite may be attributed to the formation of out-sphere surface complexes.

Keywords

Tetracycline Diatomite Lanthanum Adsorption Isotherm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    X. Yang, R.C. Flowers, H. S. Weinberg and P. C. Singer, Water Res., 45, 5218 (2011).CrossRefGoogle Scholar
  2. 2.
    L. L. Ji, W. Chen, L. Duan and D. Q. Zhu, Environ. Sci. Technol., 43, 2322 (2009).CrossRefGoogle Scholar
  3. 3.
    A. K. Sarmah, M. T. Meyer and A. B. A. Boxall, Chemosphere, 65, 725 (2006).CrossRefGoogle Scholar
  4. 4.
    J. L. Martinez, Environ. Pollut., 157, 2893 (2009).CrossRefGoogle Scholar
  5. 5.
    S. Kim, P. Eichhorn, J. N. Jensen, A. S. Weber and D. S. Aga, Environ. Sci. Technol., 39, 5816 (2005).CrossRefGoogle Scholar
  6. 6.
    T. Polubesova, D. Zadaka, L. Groisman and S. Nir, Water Res., 40, 2369 (2006).CrossRefGoogle Scholar
  7. 7.
    Y. Chen, C. Hu, J. H. Qu and M. Yang, J. Photochem. Photobiol. A., 197, 81 (2008).CrossRefGoogle Scholar
  8. 8.
    M. H. Khan, H. Bae and J. Y. Jung, J. Hazard. Mater., 181, 659 (2010).CrossRefGoogle Scholar
  9. 9.
    I. R. Bautitz and R. F. P. Nogueira, J. Photochem. Photobiol. A., 187, 33 (2007).CrossRefGoogle Scholar
  10. 10.
    J. Bai, Y. B. Liu, J. H. Li, B. X. Zhou, Q. Zheng and W. M. Cai, Appl. Catal. B-Environ., 98, 154 (2010).CrossRefGoogle Scholar
  11. 11.
    A. Santos, P. Yustos, A. Quintanilla, F. Garciaa-ochoa, J. A. Casas and J. J. Rodriaguez, Environ. Sci. Technol., 38, 133 (2004).CrossRefGoogle Scholar
  12. 12.
    P. Kulshrestha, R. F. Giese and D. S. Aga, Environ. Sci. Technol., 38, 4097 (2004).CrossRefGoogle Scholar
  13. 13.
    P. H. Chang, J. S. Jean, W. T. Jiang and Z. H. Li, Colloids Surf., A., 339, 94 (2009).CrossRefGoogle Scholar
  14. 14.
    Y. Gao, Y. Li, L. Zhang, H. Huang, J. J. Hu, S. M. Shah and X. G. Su, J. Colloid Interface Sci., 368, 540 (2012).CrossRefGoogle Scholar
  15. 15.
    X. Yuan, X. Wang, S. P. Zhuo, Z. H. Han, G. Q. Wang, X. L. Gao and Z. F. Yan, Microporous. Mesoporous. Mater., 117, 678 (2009).CrossRefGoogle Scholar
  16. 16.
    H. J. Liu, Y. Yang, J. Kang, M. H. Fan and J. H. Qu, J. Environ. Sci.- China, 24, 242 (2012).CrossRefGoogle Scholar
  17. 17.
    L. N. Shao, Z. M. Ren, G. S. Zhang and L. L. Chen, Mater. Chem. Phys., 135, 16 (2012).CrossRefGoogle Scholar
  18. 18.
    M. Al-Ghouti, M. A. M. Khraisheh, M. N. M. Ahmad and S. Allen, J. Colloid Interface Sci., 287, 6 (2005).CrossRefGoogle Scholar
  19. 19.
    R. S. S. Wu, K. H. Lam, J. M. N. Lee and T. Lau, Chemosphere, 69, 289 (2007).CrossRefGoogle Scholar
  20. 20.
    S. L. Tian, P. X. Jiang, P. Ning and Y. H. Su, Chem. Eng. J., 151, 141 (2009).CrossRefGoogle Scholar
  21. 21.
    R. A. Figueroa, A. Leonard and A.A. MacKay, Environ. Sci. Technol., 38, 476 (2004).CrossRefGoogle Scholar
  22. 22.
    P. H. Chang, Z. H. Li and T. L. Yu, J. Hazard. Mater., 165, 148 (2009).CrossRefGoogle Scholar
  23. 23.
    I. Langmuir, J. Am. Chem. Soc., 38, 2221 (1916).CrossRefGoogle Scholar
  24. 24.
    X. R. Xu and X. Y. Li, Chemosphere., 78, 430 (2010).CrossRefGoogle Scholar
  25. 25.
    J. Kang, H. J. Liu, Y. M. Zheng, J. H. Qu and J. P. Chen, J. Colloid Interface Sci., 344, 117 (2009).CrossRefGoogle Scholar
  26. 26.
    B. A. Manning and S. Goldberg, Environ. Sci. Technol., 31, 2005 (1997).CrossRefGoogle Scholar
  27. 27.
    Z. H. Li, P. H. Chang, J. S. Jean, W. T. Jiang and C. J. Wang, J. Colloid Interface Sci., 341, 311 (2010).CrossRefGoogle Scholar
  28. 28.
    S. Lagergren, Handlingar., 24, 1 (1898).Google Scholar
  29. 29.
    Y. S. Ho and G. McKay, Process Biochem., 34, 451 (1999).CrossRefGoogle Scholar
  30. 30.
    M. Ruthiraan, N. M. Mubarak, R. K. Thines, E. C. Abdullah, J. N. Sahu, N. S. Jayakumar and P. Ganesan, Korean J. Chem. Eng., 32(3), 446 (2015).CrossRefGoogle Scholar
  31. 31.
    F. J. Hingston, A. M. Posner and J. P. Quirk, J. Soil Sci., 23, 177 (1972).CrossRefGoogle Scholar
  32. 32.
    Z. Al-qodah, Water Res., 34, 4295 (2000).CrossRefGoogle Scholar
  33. 33.
    M. A. M. Khraisheh, Adsorption, 11, 547 (2005).CrossRefGoogle Scholar
  34. 34.
    P. H. Chang, Z. H. Li, J. S. Jean, W. T. Jiang, C. H. Wang and K. H. Lin, Appl. Clay Sci., 67-68, 158 (2012).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2015

Authors and Affiliations

  • Guoting Li
    • 1
  • Yanmin Feng
    • 1
  • Weiyong Zhu
    • 1
  • Xiwang Zhang
    • 2
  1. 1.Department of Environmental and Municipal EngineeringNorth China University of Water Resources and Electric PowerZhengzhouChina
  2. 2.Department of Chemical EngineeringMonash UniversityClaytonAustralia

Personalised recommendations