Skip to main content
Log in

Catalytic propane dehydrogenation: Advanced strategies for the analysis and design of moving bed reactors

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A moving bed reactor (MBR) is one of the most innovative reactors that are commonly used in industry nowadays. However, the modeling and optimization of the reactor have been rarely performed at conceptual design stage due to its complexity of design, and it has resulted in increased capital and operating costs of the overall chemical processes. In this work, advanced strategies were introduced to model an MBR and its regenerator mathematically, incorporating catalyst deactivation, such as coke formation. Various reactor designs and operating parameters of the MBR were optimized to increase the overall reactor performance, such as conversion or selectivity of the main products across the reactor operating period. These optimization parameters include: (1) reactant flow inside a reactor, (2) various networks of MBRs, (3) temperature of the feed stream, (4) intermediate heating or cooling duties, (5) residence time of the catalyst or velocity of catalyst flow, and (6) flow rate of the fresh make-up catalyst. The propane dehydrogenation process was used as a case study, and the results showed the possibility of significant increase of reactor performance through optimization of the above parameters. For optimization, the simulated annealing (SA) algorithm was incorporated into the reactor modeling. This approach can be easily applied to other reaction processes in industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.J. Schaefer, D. Vortmeyer and C.C. Watson, Chem. Eng. Sci., 29(1), 119 (1974).

    Article  CAS  Google Scholar 

  2. C. M. Marb and D. Vortmeyer, Chem. Eng. Sci., 43(4), 811 (1988).

    Article  CAS  Google Scholar 

  3. T. N. Haynes and H. S. Caram, Chem. Eng. Sci., 49(24, II), 5465 (1994).

    Article  CAS  Google Scholar 

  4. E. H. P. Wolff, Chem. Eng. Sci., 49(24, II), 5427 (1994).

    Article  CAS  Google Scholar 

  5. J. Fricke and H. Schmidt-Traub, Chem. Eng. Process., 42(3), 237 (2003).

    Article  CAS  Google Scholar 

  6. Z. Mu, J. Wang, T. Wang and Y. Jin, Chem. Eng. Process., 42(5), 409 (2003).

    Article  CAS  Google Scholar 

  7. S. Sahebdelfara, P. M. Bijani, M. Saeedizada, F.T. Zangeneha and K. Ganji, Appl. Catal. A-Gen., 395, 107 (2011).

    Article  Google Scholar 

  8. Z. Szwast and S. Sieniutycz, Chem. Eng. J., 103(1-3), 45 (2004).

    Article  CAS  Google Scholar 

  9. H. S. Fogler and M. N. Gurmen, http://www.engin.umich.edu/ ~cre/course/lectures/ten/index.htm.

  10. M. Larsson, Coke on supported palladium and platinum catalysts, PhD Thesis, Chalmers University of Technology (1997).

  11. B. Jiang, X. Feng, L. Yan, Y. Jiang, Z. Liao, J. Wang and Y. Yang, Ind. Eng. Chem. Res., 53, 4623 (2004).

    Article  Google Scholar 

  12. D. K. Leea, H. Baek and W. L. Yoon, Int. J. Hydrogen Energy, 31, 649 (2006).

    Article  Google Scholar 

  13. Y. S. Cho and B. Joseph, Ind. Eng. Chem. Process Des. Dev., 20, 314 (1981).

    Article  CAS  Google Scholar 

  14. E. Aylón, A. Fernández-Colino, M.V. Navarro, R. Murillo, T. García and A. M. Mastral, Ind. Eng. Chem. Res., 47, 4029 (2008).

    Article  Google Scholar 

  15. M. Kawase, T.B. Suzuki, K. Inoue, K. Yoshimoto and K. Hashimoto, Chem. Eng. Sci., 51(11), 2971 (1996).

    Article  CAS  Google Scholar 

  16. J. Xu, Y. Liu, G. Xu, W. Yu and A.K. Ray, AIChE J., 59(12), 4705 (2013).

    Article  CAS  Google Scholar 

  17. N. S. Graça, L. S. Pais, V.M.T.M. Silva and A.E. Rodrigues, Chem. Eng. J., 207-208, 504 (2012).

    Article  Google Scholar 

  18. A.S. Kurup, H. J. Subramani, K. Hidajat and A.K. Ray, Chem. Eng. J., 108, 19 (2005).

    Article  CAS  Google Scholar 

  19. W. Yu, K. Hidajat and A. K. Ray, Ind. Eng. Chem. Res., 42, 6743 (2003).

    Article  CAS  Google Scholar 

  20. J. Gascón, C. Téllez, J. Herguido and M. Menéndez, Appl. Catal. A-Gen., 248(1-2), 105 (2003).

    Article  Google Scholar 

  21. A. Sadana and L. K. Doraiswamy, J. Catal., 23(2), 147 (1971).

    Article  CAS  Google Scholar 

  22. T. Rzesnitzek, H. Mullerschon, F. C. Gunther and M. Wozniak, Infotag “Nichtlineare Optimierung und stochastische Analysen mit LSOPT,” Stuttgart.

  23. S. Hwang and R. Smith, Korean J. Chem. Eng., 29(1), 25 (2012).

    Article  CAS  Google Scholar 

  24. A. R. Dozier, Cross-flow reactor, US Patent, 4,108,106 (1978).

    Google Scholar 

  25. J.M. Lee, Cross-flow, fixed-bed catalytic reactor, US Patent, 5,520,891 (1994).

    Google Scholar 

  26. J. D. Snyder and B. Subramaniam, Chem. Eng. Sci., 53(4), 727 (1998).

    Article  CAS  Google Scholar 

  27. M.G. Hunter and K.W. Goebel, Two-stage hydroprocessing reaction scheme with series recycle gas flow, US Patent, 5,958,218 (1999).

    Google Scholar 

  28. H. T. Delbridge and D. C. Dyson, AIChE J., 19(5), 952 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungwon Hwang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghodasara, K., Hwang, S. & Smith, R. Catalytic propane dehydrogenation: Advanced strategies for the analysis and design of moving bed reactors. Korean J. Chem. Eng. 32, 2169–2180 (2015). https://doi.org/10.1007/s11814-015-0050-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0050-x

Keywords

Navigation