Skip to main content
Log in

Flow and heat transfer characteristics in a channel having furrowed wall based on sinusoidal wave

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The effect of wall geometry on the flow and heat transfer in a channel with one lower furrowed and an upper flat wall kept at a uniform temperature is investigated by large eddy simulation. Three channels, one with sinusoidal wavy surface having the ratio (amplitude to wavelength) α/λ=0.05 and the other two with furrowed surface derived from the sinusoidal curve, are considered. The numerical results show that the streamwise vortices center is located near the lower wall and vary along the streamwise on various furrow surfaces. The furrow geometry increases the pressure drag and decreases the friction drag of the furrowed surface compared with that of the smooth surface; consequently, the total drag is increased for the augment of pressure drag. As expected, the heat transfer performance has been improved. Finally, a thermal performance factor is defined to evaluate the performance of the furrowed wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Phan, D. L. Holgate and G. J. Griffin, Korean J. Chem. Eng., 20, 1012 (2003).

    Article  CAS  Google Scholar 

  2. D.R. Sawyers, M. Sen and H.C. Chang, Int. J. Heat Mass Transfer, 41, 3559 (1998).

    Article  CAS  Google Scholar 

  3. P. Naphon, Energ. Convers. Manage., 48, 1516 (2007).

    Article  CAS  Google Scholar 

  4. S.W. Chang, A.W. Lees and T.C. Chou, Int. J. Heat Mass Transfer, 52, 4592 (2009).

    Article  Google Scholar 

  5. E. A. M. Elshafei, M. M. Awad, E. El-Negiry and A. G. Ali, Energy, 35, 101 (2010).

    Article  Google Scholar 

  6. J. C. Burns and T. Parks, J. Fluid Mech., 29, 405 (1967).

    Article  Google Scholar 

  7. L. Goldstein and E. M. Sparrow, J. Heat Trans.-T. ASME, 99, 187 (1977).

    Article  CAS  Google Scholar 

  8. D. P. Zilker, G.W. Cook and T. J. Hanratty, J. Fluid Mech., 82, 29 (1977).

    Article  Google Scholar 

  9. D. P. Zilker and T. J. Hanratty, J. Fluid Mech., 90, 257 (1979).

    Article  Google Scholar 

  10. N. Kruse and P. Rudolf von Rohr, Int. J. Heat Mass Transfer, 49, 3514 (2006).

    Article  Google Scholar 

  11. S. Kuhn and P. Rudolf von Rohr, Int. J. Heat Fluid Flow, 29, 94 (2008).

    Article  CAS  Google Scholar 

  12. C. Maaβ and U. Schumann, In: Hirschel, E. H. (Ed.), Flow simulation with high performance computers, Notes on Numerical Fluid Mechanics, 52, 227 (1996).

    Google Scholar 

  13. H. S. Choi and K. Suzuki, Int. J. Heat Fluid Flow, 26, 681 (2005).

    Article  CAS  Google Scholar 

  14. S. Kuhn, S. Kenjeres and P. Rudolf von Rohr, Int. J. Therm. Sci., 49, 1209 (2010).

    Article  Google Scholar 

  15. C. C. Wang and C. K. Chen, Int. J. Heat Mass Transfer, 45, 2587 (2002).

    Article  Google Scholar 

  16. T. S. Park, H. J. Sung and K. Suzuki, Int. J. Heat Fluid Flow, 24, 29 (2003).

    Article  Google Scholar 

  17. T. S. Park, H. S. Choi and K. Suzuki, Int. J. Heat Mass Transfer, 47, 2403 (2004).

    Article  Google Scholar 

  18. A. Z. Dellil, A. Azzi and B. A. Jubran, Heat Mass Transfer, 40, 793 (2004).

    Article  Google Scholar 

  19. H. S. Yoon, O. A. El-Samni, A.T. Huynh, H. H. Chun, H. J. Kim, A.H. Pham and I. P. Park, Ocean Eng., 36, 697 (2009).

    Article  Google Scholar 

  20. P. Naphon, Int. Commun. Heat Mass, 36, 942 (2009).

    Article  Google Scholar 

  21. K. A. Hafez, O. A. Elsamni and K.Y. Zakaria, Alex. Eng. J., 50, 145 (2011).

    Article  CAS  Google Scholar 

  22. S. Barboy, A. Rashkovan and G. Ziskind, Int. J. Heat Mass Transfer, 55, 3576 (2012).

    Article  Google Scholar 

  23. J. Jimenez and P. Moin, J. Fluid Mech., 225, 213 (1991)

    Article  Google Scholar 

  24. J. Kim, P. Moin and R. Moser, J. Fluid Mech., 177, 133 (1987).

    Article  CAS  Google Scholar 

  25. D. K. Lilly, Physics of Fluids, 4, 633 (1992).

    Article  Google Scholar 

  26. J.W. Deardoff, J. Fluid Mech., 41, 465 (1970).

    Google Scholar 

  27. B. Kader, Int. J. Heat Mass Transfer, 43, 1541 (1981).

    Article  Google Scholar 

  28. S.V. Patankar and D. B. Spalding, Int. J. Heat Mass Transfer, 15, 1787 (1972).

    Article  Google Scholar 

  29. R. B. Dean, J. Fluid Eng., 100, 215 (1987).

    Article  Google Scholar 

  30. F.P. Incropera and D.P. Dewitt, Fundam. Heat Mass Transfer, Wiley, New York (1996).

    Google Scholar 

  31. M. S. Chong, A.E. Perry and B. J. Cantwell, Phys. Fluids A, 2, 765 (1990).

    Article  Google Scholar 

  32. J. C.R. Hunt, A. A. A. Wray and P. Moin, Proceedings of the summer program of center for turbulence research, United States of America (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiansheng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Gao, X. & Li, W. Flow and heat transfer characteristics in a channel having furrowed wall based on sinusoidal wave. Korean J. Chem. Eng. 32, 2187–2203 (2015). https://doi.org/10.1007/s11814-015-0032-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0032-z

Keywords

Navigation