Skip to main content
Log in

New disperse dyeing method of poly(p-phenylene benzobisoxazole) fiber pretreated with polyphosphoric acid

  • Polymer, Industrial Chemistry
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Poly(p-phenylene benzobisoxazole) fiber is considered as a high-performance fiber because of its high strength and excellent thermal and chemical stability. It has been used in industrial reinforcement, body armor and military camouflage. But the application of poly(p-phenylene benzobisoxazole) fiber used for protective clothing is limited because it is difficult to dye with conventional dyeing processes. In this work, a carrier dyeing method with disperse dyes was first used to dye the fiber after a pretreatment with polyphosphoric acid. The effects of the carrier structure and dyeing conditions on the color strength of dyed samples were investigated. In addition, the crystallinity and orientation degree of the poly(p-phenylene benzobisoxazole) fibers before and after pretreatment with phthalimide and benzyl benzoate were measured by X-ray diffraction and velocity-oriented test, respectively. The results suggested phthalimide and benzyl benzoate, as carrier, could effectively promote disperse dyeing of the PBO fiber pretreated with polyphosphoric acid. Meanwhile, the optimal conditions for the carrier dyeing were obtained, that is, concentration of carrier 4%, dyeing temperature 150 °C and time 120 min. By way of the carrier dyeing, the K/S value of dyed sample and the percentage of dye exhaustion were greatly improved, while the crystalline structure and orientation degree of the pretreated samples hardly changed. Furthermore, the decreases of the tensile strength and the limiting oxygen index of dyed poly(p-phenylene benzobisoxazole) sample were very little, and the color fastness was also satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. G. Chae and S. Kumar, J. Appl. Polym. Sci., 100, 791 (2006).

    Article  CAS  Google Scholar 

  2. S. Bourbigot, X. Flambard and S. Duquesne, Polym. Int., 50, 157 (2001).

    Article  CAS  Google Scholar 

  3. T. Zhang, D. Hu, J. Jin, S. Yang, G. Li and J. Jiang, Appl. Surf. Sci., 256, 2073 (2010).

    Article  CAS  Google Scholar 

  4. B. Song, Q. Fu, L. Ying, X. Liu, Q. Zhuang and Z. Han, J. Appl. Polym. Sci., 124, 1050 (2012).

    Article  CAS  Google Scholar 

  5. D. Feng, S. Wang, Q. Zhuang, P. Wu and Z. Han, Polymer, 45, 8871 (2004).

    Article  CAS  Google Scholar 

  6. J. F. Wolfe and F. E. Arnold, Macromolecules, 14, 909 (1981).

    Article  CAS  Google Scholar 

  7. J. F. Wolfe, B. H. Loo and F. E. Arnold, Macromolecules, 14, 915 (1981).

    Article  CAS  Google Scholar 

  8. P. Chen, C. Zhang, X. Zhang, B. Wang, W. Li and Q. Lei, Appl. Surf. Sci., 255, 3153 (2008).

    Article  CAS  Google Scholar 

  9. D. Liu, J. Hu, Y. Zhao, X. Zhou, P. Ning and Y. Wang, J. Appl. Polym. Sci., 102, 1428 (2006).

    Article  CAS  Google Scholar 

  10. A. G. Andreopoulos and P.A. Tarantili, J. Elastomers Plast., 30, 118 (1998).

    CAS  Google Scholar 

  11. G.M. Wu, C. H. Hung, J. H. You and S. J. Liu, J. Polym. Res., 11, 31 (2004).

    Article  CAS  Google Scholar 

  12. C. H. Zhang, Y.D. Huang and Y.D. Zhao, Mater. Chem. Phys., 92, 245 (2005).

    Article  CAS  Google Scholar 

  13. G. M. Wu and C. H. Chang, Vacuum, 81, 1159 (2007).

    Article  CAS  Google Scholar 

  14. Y. Guan, Y.-h. Mao, Q.-m. Kong, X.-f. Zeng and P.-x. Zhu, Color. Technol., 129, 367 (2013).

    Article  CAS  Google Scholar 

  15. Y. Guan, Y.-h. Mao, D. Wei, X.-x. Wang and P.-x. Zhu, Korean J. Chem. Eng., 30, 1810 (2013).

    Article  CAS  Google Scholar 

  16. A. Murray and K. Mortimer, Rev. Prog. Color. Relat. Top., 2, 67 (1971).

    Article  CAS  Google Scholar 

  17. V. S. Salvin, American Dyestuff Reporter, 49, 35 (1960).

    Google Scholar 

  18. W. Ingamells, R. H. Peters and S.R. Thornton, J. Appl. Polym. Sci., 17, 3733 (1973).

    Article  Google Scholar 

  19. J.P. Kim and S.M. Burkinshaw, J. Soc. Dyers Colour., 111, 107 (1995).

    Article  CAS  Google Scholar 

  20. I. S. Kim, H.M. Cho, J. Koh and J.P. Kim, J. Appl. Polym. Sci., 90, 3896 (2003).

    Article  CAS  Google Scholar 

  21. R. S. Asquith, H. S. Blair and N. Spence, J. Soc. Dyers Colour., 94, 49 (1978).

    Article  CAS  Google Scholar 

  22. R. H. Peters and H. Wang, J. Soc. Dyers Colour., 98, 432 (1982).

    Article  CAS  Google Scholar 

  23. D. Aitken and S. M. Burkinshaw, J. Soc. Dyers Colour., 108, 219 (1992).

    Article  CAS  Google Scholar 

  24. R.H. Peters and W. Ingamells, J. Soc. Dyers Colour., 89, 397 (1973).

    Article  CAS  Google Scholar 

  25. Z. Gur-Arieh and W. C. Ingamells, J. Soc. Dyers Colour., 90, 8 (1974).

    Article  CAS  Google Scholar 

  26. Y.-H. Mao, Y. Guan, Q.-K. Zheng, Q.-S. Liu, X.-N. Feng and X.-X. Wang, Color. Technol., 129, 39 (2013).

    Article  CAS  Google Scholar 

  27. E. Öner, Y. Büyükakinci and N. Sökmen, Color. Technol., 129, 125 (2013).

    Article  Google Scholar 

  28. Y.-H. Mao, Y. Guan, Q.-K. Zheng, X.-N. Feng and X.-X. Wang, Cellulose, 18, 271 (2011).

    Article  CAS  Google Scholar 

  29. ASTM, Standard Test Method for Measuring the Minimum Oxygen Concentration to Support Candle-like Combustion of Plastics (Oxygen Index) (West Conshohocken, 2013).

  30. J. Borah and N. Karak, J. Appl. Polym. Sci., 104, 648 (2007).

    Article  CAS  Google Scholar 

  31. M. I. Nelson, Combust. Theory Model., 5, 59 (2001).

    Article  CAS  Google Scholar 

  32. M. Chen, D.-L. Zhou, Y. Chen and P.-X. Zhu, J. Appl. Polym. Sci., 103, 903 (2007).

    Article  CAS  Google Scholar 

  33. A.P. Gupta, U.K. Saroop and V. Gupta, J. Appl. Polym. Sci., 106, 917 (2007).

    Article  CAS  Google Scholar 

  34. W. H. Charch and W. W. Moseley, Text. Res. J., 29, 525 (1959).

    Article  CAS  Google Scholar 

  35. W.W. Moseley, J. Appl. Polym. Sci., 3, 266 (1960).

    Article  CAS  Google Scholar 

  36. BISFA, Testing Methods for Polyester Filament Yarns (Brussels, 2004).

  37. ISO, Textiles–Tests for colour fastness–Part C02: Colour fastness to washing: Test 2 (Geneva, 1989).

  38. ISO, Textiles–Tests for colour fastness–Part B02: Colour fastness to artifical light: Xenon arc fading lamp test (Geneva, 1994).

  39. Y. Guan, Q.-k. Zheng, Y.-h. Mao, M.-s. Gui and H.-b. Fu, J. Appl. Polym. Sci., 105, 726 (2007).

    Article  CAS  Google Scholar 

  40. A.D. Broadbent, Basic Principles of Textile Coloration (Bradford: Society of Dyers Colourists, 2001).

    Google Scholar 

  41. W. Ingamells and R.H. Peters, Polym. Eng. Sci., 20, 276 (1980).

    Article  CAS  Google Scholar 

  42. G. A. F. Roberts and R.K. Solanki, J. Soc. Dyers Colour., 95, 226 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Guan or Pu-xin Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, Yh., Guan, Y. & Zhu, Px. New disperse dyeing method of poly(p-phenylene benzobisoxazole) fiber pretreated with polyphosphoric acid. Korean J. Chem. Eng. 32, 2133–2141 (2015). https://doi.org/10.1007/s11814-015-0009-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0009-y

Keywords

Navigation