Skip to main content
Log in

A novel and computationally efficient algorithm for stability analysis of multi input-multi output process control systems

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

An efficient method based on the Faddeev-Leverrier algorithm combined with the Adomian decomposition method is devised to facilitate the stability analysis of multi-input multi-output control systems. In contrast to prior eigenvalue algorithms, our method affords all eigenvalues of the state matrix, either real or complex. Specifically, the calculation of the complex eigenvalues is made possible through special canonical forms, mainly involving square root operators, of the characteristic equation of the state matrix. Moreover, the proposed method does not require an initial guess, which is often a matter of concern since an inappropriate guess can cause failure in such available schemes. For the sake of illustration, a number of numerical examples, including chemical reaction processes, are also provided that demonstrate the efficiency of our new technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Adebekun and F. J. Schork, Chem. Eng. Commun., 69, 43 (1988).

    Article  CAS  Google Scholar 

  2. A. Arpornwichanop, P. Kittisupakorn and M. A. Hussain, Korean J. Chem. Eng., 19, 221 (2002).

    Article  CAS  Google Scholar 

  3. D. R. Coughanowr and L. B. Koppel, Process Systems Analysis and Control, McGraw-Hill, New York (1965).

    Google Scholar 

  4. R. C. Dorf and R. H. Bishop, Modern Control Systems, Prentice-Hall, New Jersey (2001).

    Google Scholar 

  5. M. Gopal, Digital Control Engineering, John Wiley and Sons, New York (1988).

    Google Scholar 

  6. M. Han and D. E. Clough, Korean J. Chem. Eng., 23, 540 (2006).

    Article  CAS  Google Scholar 

  7. K. Ogata, Modern Control Engineering, Prentice-Hall, Englewood Cliffs, NJ (1999).

    Google Scholar 

  8. G. Stephanopoulos, Chemical Process Control: An Introduction to Theory and Practice, Prentice Hall, Englewood Cliffs, NJ (1984).

    Google Scholar 

  9. G. A. Allaire and S. M. Kaber, Numerical Linear Algebra, Springer, New York (2002).

    Google Scholar 

  10. R. D. Pantazis and D.B. Szyld, Numer. Lin. Algebra Appl., 2, 251 (1995).

    Article  Google Scholar 

  11. Y. Saad, Numerical Methods for Large Eigenvalue Problems, Manchester University Press, Manchester (1992).

    Google Scholar 

  12. J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press, Oxford (1988).

    Google Scholar 

  13. H. Fatoorehchi and H. Abolghasemi, J. Egyptian Math. Soc., 22, 6 (2014).

    Article  Google Scholar 

  14. M. Gopal, Modern Control System Theory, Wiley, New York (1993).

    Google Scholar 

  15. G. Helmberg and P. Wagner, Lin. Algebra Appl., 185, 219 (1993).

    Article  Google Scholar 

  16. A. S. Householder, The Theory of Matrices in Numerical Analysis, Blaisdell, New York (1964).

    Google Scholar 

  17. G. Adomian and R. Rach, J. Math. Anal. Appl., 91, 39 (1983).

    Article  Google Scholar 

  18. G. Adomian, Solving frontier problems of physics: The decomposition method, Kluwer Academic, Dordrecht (1994).

    Book  Google Scholar 

  19. K. Abbaoui and Y. Cherruault, Math. Comput. Model., 20, 69 (1994).

    Article  Google Scholar 

  20. K. Abbaoui and Y. Cherruault, Comput. Math. Appl., 28, 103 (1994).

    Article  Google Scholar 

  21. A. Abdelrazec and D. Pelinovsky, Numer. Meth. Part. Differ. Equat., 27, 749 (2011).

    Article  Google Scholar 

  22. E. Babolian and J. Biazar, Appl. Math. Comput., 130, 383 (2002).

    Article  Google Scholar 

  23. Y. Cherruault and G. Adomian, Math. Comput. Model., 18, 103 (1993).

    Article  Google Scholar 

  24. H. Fatoorehchi and H. Abolghasemi, J. Appl. Comput. Sci. Math., 5, 85 (2011).

    Google Scholar 

  25. E. Babolian and Sh. Javadi, Appl. Math. Comput., 153, 253 (2004).

    Article  Google Scholar 

  26. J.-S. Duan, Appl. Math. Comput., 216, 1235 (2010).

    Article  Google Scholar 

  27. J.-S. Duan, Appl. Math. Comput., 217, 6337 (2011).

    Article  Google Scholar 

  28. R. Rach,J. Math. Anal. Appl., 102, 415 (1984).

  29. R. Rach, Kybernetes, 37, 910 (2008).

    Article  Google Scholar 

  30. S. Abbasbandy, Appl. Math. Comput., 145, 887 (2003).

    Article  Google Scholar 

  31. S. Abbasbandy and M.T. Darvishi, Appl. Math. Comput., 163, 1265 (2005).

    Article  Google Scholar 

  32. G. Adomian, J. Math. Anal. Appl., 102, 402 (1984).

    Google Scholar 

  33. G. Adomian, Nonlinear Stochastic Operator Equations, Academic Press, New York (1986).

    Google Scholar 

  34. G. Adomian, Math. Comput. Model., 13, 17 (1990).

    Article  Google Scholar 

  35. G. Adomian and R. Rach, J. Math. Anal. Appl., 105, 141 (1985).

    Article  Google Scholar 

  36. G. Adomian and R. Rach, J. Math. Anal. Appl., 112, 136 (1985).

    Article  Google Scholar 

  37. G. Adomian and R. Rach, J. Math. Anal. Appl., 113, 504 (1986).

    Article  Google Scholar 

  38. G. Adomian and R. Rach, Kybernetes, 15, 33 (1986).

    Article  Google Scholar 

  39. G. Adomian, R. Rach and D. Sarafyan, J. Math. Anal. Appl., 111, 423 (1985).

    Article  Google Scholar 

  40. L. Bougoffa and R. C. Rach, Kybernetes, 42, 641 (2013).

    Article  Google Scholar 

  41. L. Bougoffa, R.C. Rach and A. Mennouni, Appl. Math. Comput., 218, 1785 (2011).

    Article  Google Scholar 

  42. L. Bougoffa, A. Mennouni and R. C. Rach, Appl. Math. Comput., 219, 4423 (2013).

    Article  Google Scholar 

  43. J.-S. Duan, R. Rach, D. Baleanu and A.-M. Wazwaz, Commun. Fract. Calc., 3, 73 (2012).

    Google Scholar 

  44. A. M. A. El-Sayed and M. Gaber, Phys. Lett., 359, 175 (2006).

    Article  CAS  Google Scholar 

  45. H. Fatoorehchi and H. Abolghasemi, Adv. Nat. Appl. Sci., 5, 26 (2011).

    Google Scholar 

  46. H. Fatoorehchi and H. Abolghasemi, Appl. Appl. Math., 7, 717 (2012).

    Google Scholar 

  47. H. Fatoorehchi and H. Abolghasemi, Intermetallics, 32, 35 (2013).

    Article  CAS  Google Scholar 

  48. H. Fatoorehchi and H. Abolghasemi, Appl. Math. Model., 37, 6008 (2013).

    Article  Google Scholar 

  49. H. Fatoorehchi and H. Abolghasemi, J. Taiwan Inst. Chem. Eng., 45, 880 (2014).

    Article  CAS  Google Scholar 

  50. H. HFatoorehchi, R. Rach, O. Tavakoli and H. Abolghasemi, Chem. Eng. Commun., 202, 402 (2015).

    Article  Google Scholar 

  51. H. Fatoorehchi and H. Abolghasemi, J. Egyptian Math. Soc., 22, 524 (2014).

    Article  Google Scholar 

  52. H. Fatoorehchi, H. Abolghasemi, R. Rach and M. Assar, Can. J. Chem. Eng., 92, 2211 (2014).

    Article  CAS  Google Scholar 

  53. H. Fatoorehchi, I. Gutman and H. Abolghasemi, Kragujevac J. Sci., 36, 69 (2014).

    Google Scholar 

  54. H. Fatoorehchi, H. Abolghasemi and R. Rach, J. Petrol. Sci. Eng., 117, 46 (2014).

    Article  CAS  Google Scholar 

  55. R. Rach, J.-S. Duan and A.-M. Wazwaz, J. Math. Chem., 52, 255 (2014).

    Article  CAS  Google Scholar 

  56. A. Dib, A. Haiahem and B. Bou-said, Powder Technol., 269, 193 (2015).

    Article  CAS  Google Scholar 

  57. R. Rach, J.-S. Duan and A.-M. Wazwaz, Chem. Eng. Commun., (In press), DOI:10.1080/00986445.2014.900054.

  58. A. Hasseine, Z. Barhoum, M. Attarakih and H.-J. Bart, Adv. Powder Technol., (In press), DOI:10.1016/j.apt.2014.08.011.

  59. B. Kundu, Int. J. Refrig., 32, 1657 (2009).

    Article  Google Scholar 

  60. B. Kundu and S. Wongwises, J. Franklin Inst., 349, 966 (2011).

    Article  Google Scholar 

  61. R. Rach, Kybernetes, 41, 1087 (2012).

    Google Scholar 

  62. A. Saravanan and N. Magesh, J. Egyptian Math. Soc., 21, 259 (2013).

    Article  Google Scholar 

  63. A. M. Siddiqui, M. Hameed, B.M. Siddiqui and Q.K. Ghori, Comm. Nonlinear Sci. Numer. Simulat., 15, 2388 (2010).

    Article  Google Scholar 

  64. A.-M. Wazwaz, R. Rach and J.-S. Duan, Appl. Math. Comput., 219, 5004 (2013).

    Article  Google Scholar 

  65. J.D. Hoffman and S. Frankel, Numerical Methods for Engineers and Scientists, McGraw-Hill, New York (2001).

    Google Scholar 

  66. D. Shanks, J. Math. Phys. Sci., 34, 1 (1955).

    Google Scholar 

  67. M. Bakošová, D. Puna, P. Dostál and J. Závacká, Chem. Paper Chem. Zvesti, 63, 527 (2009).

    Google Scholar 

  68. M. Pottmann and D. E. Seborg, J. Proc. Cont., 2, 189 (1992).

    Article  CAS  Google Scholar 

  69. D. S. Watkins, Fundamentals of Matrix Computations, Wiley, New York (1991).

    Google Scholar 

  70. R. Bronson and G. B. Costa, Linear algebra: An introduction, Academic Press, New York (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Abolghasemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatoorehchi, H., Abolghasemi, H., Zarghami, R. et al. A novel and computationally efficient algorithm for stability analysis of multi input-multi output process control systems. Korean J. Chem. Eng. 32, 1733–1743 (2015). https://doi.org/10.1007/s11814-014-0385-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0385-8

Keywords

Navigation