Skip to main content
Log in

Measurement of CO2 solubility in cyanide anion based ionic liquids; [c4mim][SCN], [c4mim][N(CN)2], [c4mim][C(CN)3]

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

To investigate the effect of cyanide ions on the solubility of CO2 in ionic liquid, we measured the solubility of CO2 in three ionic liquids which contain three different numbers of cyanide anions, 1-butyl-3-methylimidazolium thiocyanate ([c4mim][SCN]), 1-butyl-3-methylimidazolium dicyanamide ([c4mim][N(CN)2]) and 1-butyl-3-methylimidazolium tricyanomethanide ([c4mim][C(CN)3]). The solubility of CO2 in ionic liquids was determined by measuring bubble-point pressure in high-pressure variable-volume view cell at temperatures from 303.15 to 373.15 K in 10 K intervals. The measured data were correlated with the Peng-Robinson equation of state (PR-EoS) using the van der Waals one fluid mixing rules. The critical properties and acentric factor of ionic liquids were estimated by using the modified Lydersen-Joback-Reid method. As a result, the calculated data were relatively well agreed with the experimental results and, as is commonly known, the solubility of CO2 was observed to increase with increasing pressure and with decreasing temperature. The results also show that the highest solubility was obtained by [c4mim][C(CN)3] among those three experimented ionic liquids while [c4mim][SCN] had the lowest. This implies that the CO2 solubility is affected by the number of cyanide anions contained in ionic liquid. From this result, it is concluded that the cyanide anion enhances the CO2 solubility in ionic liquid and that the ionic liquid which contains more cyanide anions has higher CO2 solubility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.D. Rogers and K. R. Seddon, Science, 302, 792 (2003).

    Article  Google Scholar 

  2. I. Krossing, J. M. Slattery, C. Daguenet, P. J. Dyson, A. Oleinikova and H. Weingärtner, J. Am. Chem. Soc., 128, 13427 (2006).

    Article  CAS  Google Scholar 

  3. J.H. Davis Jr., Chem. Lett., 33, 1072 (2004).

    Article  CAS  Google Scholar 

  4. L. A. Blanchard, D. Hancu, E. J. Beckman and J. F. Brennecke, Nature, 399, 28 (1999).

    Article  Google Scholar 

  5. M. J. Earle and K.R. Seddon, Pure Appl. Chem., 72, 1391 (2000).

    Article  CAS  Google Scholar 

  6. M. Kohoutová, A. Sikora, Š. Hovorka, A. Randová, J. Schauer, M. Tišma, K. Setničková, R. Petričkovič, S. Guernik, N. Greenspoon and P. Izák, European Polym. J., 45, 813 (2009).

    Article  Google Scholar 

  7. M. S. Benzagouta, I. M. AlNashef, W. Karnanda and K. Al-Khidir, Korean J. Chem. Eng., 30, 2108 (2013).

    Article  CAS  Google Scholar 

  8. M. Armand, F. Endres, D.R. MacFarlane, H. Ohno and B. Scrosati, Nature Mater., 8, 621 (2009).

    Article  CAS  Google Scholar 

  9. D.W. Kim, R. Roshan, J. Tharun, A. Cherian and D.W Park, Korean J. Chem. Eng., 30, 1973 (2013).

    Article  CAS  Google Scholar 

  10. S. H. Ha and Y. M. Koo, Korean J. Chem. Eng., 28, 2095 (2011).

    Article  CAS  Google Scholar 

  11. J.D. Figueroa, T. Fout, S. Plasynski, H. McIlvried and R.D. Srivastava, Int. J. Greenh. Gas Control, 2, 9 (2008).

    Article  CAS  Google Scholar 

  12. X. Zhang, X. Zhang, H. Dong, Z. Zhao, S. Zhang and Y. Huang, Energy Environ. Sci., 5, 6668 (2012).

    Article  CAS  Google Scholar 

  13. K. E. Gutowski and E. J. Maginn, J. Am. Chem. Soc., 130, 14690 (2008).

    Article  CAS  Google Scholar 

  14. J. F. Brennecke and E. J. Maginn, AIChE J., 47, 2384 (2001).

    Article  CAS  Google Scholar 

  15. M. J. Muldoon, S.N.V.K. Aki, J.L. Anderson, J.K. Dixon and J.F. Brennecke, J. Phys. Chem. B, 111, 9001 (2007).

    Article  CAS  Google Scholar 

  16. J. E. Kim, H. J. Kim and J. S. Lim, Fluid Phase Equilib., 367, 151 (2014).

    Article  CAS  Google Scholar 

  17. H. N. Song, B. C. Lee and J. S. Lim, J. Chem. Eng. Data, 55, 891 (2010).

    Article  CAS  Google Scholar 

  18. S. A. Kim, J. H. Yim and J. S. Lim, Fluid Phase Equilib., 332, 28 (2012).

    Article  CAS  Google Scholar 

  19. J. H. Yim and J. S. Lim, Fluid Phase Equilib., 352, 67 (2013).

    Article  CAS  Google Scholar 

  20. IEC BIPM, ISO IFCC and I IUPAC, Guide to the Expression of Uncertainty in Measurement, International Organization of Standardization (ISO), Geneva, Switzerland (1995).

    Google Scholar 

  21. J.M. Prausnitz, R. N. Lichtenthaler and E. G. de Azevedo, Molecular Thermodynamics of Fluid-Phase Equilibria, 3rd Ed., Prentice-Hall (1999).

    Google Scholar 

  22. M.O. McLinden, S.A. Klein, E.W. Lemmoon and A.P. Peskin, Thermodynamic Properties of Refrigerants and Refrigerant Mixtures Database (REFPROP) V.6.01, NIST, Gaithersburg (1998).

    Google Scholar 

  23. J.O. Valderrama and R.E. Rojas, Ind. Eng. Chem. Res., 48, 6890 (2009).

    Article  CAS  Google Scholar 

  24. E. K. Shin and B. C. Lee, J. Chem. Eng. Data, 53, 2728 (2008).

    Article  CAS  Google Scholar 

  25. S. G. Nam and B. C. Lee, Korean J. Chem. Eng., 30, 474 (2013).

    Article  CAS  Google Scholar 

  26. M.C. Kroon, E.K. Karakatsani, I.G. Economou, G. J. Witkamp and C. J. Peters, J. Phys. Chem., 110, 9262 (2006).

    Article  CAS  Google Scholar 

  27. A.-L Revelli, F. Mutelet and J.-N. Jaubert, J. Phys. Chem. B, 114, 12908 (2010).

    Article  CAS  Google Scholar 

  28. P. J. Carvalho, V. H. Alvarez, I. M. Marrucho, M. Aznar and J. A. P. Coutinho, J. Supercrit. Fluids, 50, 105 (2009).

    Article  CAS  Google Scholar 

  29. D.R. MacFarlane, J. M. Pringle, K. M. Johansson, S. A. Forsyth and M. Forsyth, Chem. Commun., 18, 1905 (2006).

    Article  Google Scholar 

  30. S.N.V.K. Aki, B.R. Mellein, E.M. Saurer and J. F. Brennecke, J. Phys. Chem. B, 108, 20355 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Sung Lim.

Additional information

This article is dedicated to Prof. Hwayong Kim on the occasion of his retirement from Seoul National University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.E., Kang, J.W. & Lim, J.S. Measurement of CO2 solubility in cyanide anion based ionic liquids; [c4mim][SCN], [c4mim][N(CN)2], [c4mim][C(CN)3]. Korean J. Chem. Eng. 32, 1678–1687 (2015). https://doi.org/10.1007/s11814-014-0378-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0378-7

Keywords

Navigation