Skip to main content
Log in

Supercritical CO2 extraction and response surface optimization of ginkgolic acids from ginkgo biloba exopleura

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Supercritical (Sc)-CO2 extraction was adopted to extract ginkgolic (G.) acids from ginkgo biloba exopleura. Response surface optimization was employed to maximize extraction recovery of G. acids from ginkgo biloba exopleura. The effects of pressure, temperature, CO2 mass flow rate, dosage of entrainer and extraction static-dynamic time on the yield of G. acids were investigated in detail, and the central composite design was used to maximize the extraction recovery of G. acids. The amounts of G. acids were analyzed by HPLC with the mixture of methanol and acetic acid solution as the mobile phase. The optimal process parameters for sc-CO2 extraction were determined to be: 31.3MPa extraction pressure, 46.1 °C extraction temperature and 11.1 g min-1 CO2 flow rate, 30mL ethanol entrainer, 1 h extraction static time and 2 h dynamic time. Under the conditions of optical extraction process, the average G. acids extraction rate was 74mg g-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. A. Van Beek, J Chromatogr. A., 967, 21 (2002).

    Article  Google Scholar 

  2. R. T. Major, Science, 157, 1270 (1967).

    Article  CAS  Google Scholar 

  3. J. J. Chen, T. Zhang, B. Jiang, W. M. Mu and M. Miao, Carbohydr. Polym., 87, 40 (2010).

    Article  Google Scholar 

  4. I. Castillo-Juárez, F. Rivero-Cruz, H. Celis and I. Romero, J. Ethnopharmacol., 114, 72 (2007).

    Article  Google Scholar 

  5. H. Itokawa, N. Totsuka, K. Nakahara, M. Maezuru, K. Takeya, M. Kondo, M. Inamatsu and H. Morita, Chem. Pharm. Bull., 37, 1619 (1989).

    Article  CAS  Google Scholar 

  6. A. M. Gomez, C. P. Lopez and E. M. de la Ossa, J. Chem. Eng., 61, 227 (1996).

    Google Scholar 

  7. C. Kersch, M. J. E. van Roosmalen, G. F. Woerlee and G. J. Witkamp, Ind. Eng. Chem. Res., 39, 4670 (2000).

    Article  CAS  Google Scholar 

  8. J. O. Valderrama, M. Perrut and W. Majewski, J. Chem. Eng. Data, 48, 827 (2003).

    Article  CAS  Google Scholar 

  9. G. Brunner, J. Supercrit. Fluids, 47, 574 (2009).

    CAS  Google Scholar 

  10. F. Sahena, I. S. M. Zaidul, S. Jinap, A. A. Karim, K.A. Abbas, N. A. N. Norulaini and A. K. M. Omar, J. Food Eng., 95, 240 (2009).

    Article  CAS  Google Scholar 

  11. R. Marsili and D. Callahan, J. Chromatogr. Sci., 31, 422 (1993).

    Article  CAS  Google Scholar 

  12. S. M. Ghoreishi, E. Bataghva and A. A. Dadkhah, Chem. Eng. Technol., 35, 133 (2012).

    Article  CAS  Google Scholar 

  13. Y. Tong, L. J. Gao, G. M. Xiao and X. M. Pan, Chem. Eng. Technol., 34, 241 (2011).

    Article  CAS  Google Scholar 

  14. C. L. Ye and Y. F. Lai, Chem. Eng. Technol., 35, 646 (2012).

    Article  CAS  Google Scholar 

  15. G. Bernardo-Gil, C. Oneto, P. Antunes, M. F. Rodrigues and J.M. Empis, Eur. Food Res. Technol., 212, 170 (2001).

    Article  CAS  Google Scholar 

  16. R. Oliveira, M. F. Rodrigues and M. G. Bernardo-Gil, J. Am. Oil Chem. Soc., 79, 225 (2002).

    Article  CAS  Google Scholar 

  17. S. G. Özkal, M. E. Yener and L. Bayindirli, LWT Food Sci. Technol., 38, 611 (2005).

    Article  Google Scholar 

  18. S. G. Özkal, M. E. Yener, U. Salgn and Ü. Mehmetoglu, Eur. Food Res. Technol., 220, 74 (2005).

    Article  Google Scholar 

  19. J. Yu, D. V. Dandekar, R. T. Toledo, R. K. Singh and B. S. Patil, Food Chem., 105, 1026 (2007).

    Article  CAS  Google Scholar 

  20. J. Wang, B. G. Sun, Y. P. Cao, Y. Tian and X. L. Li, Food Chem., 106, 804 (2008).

    Article  CAS  Google Scholar 

  21. M. H. Eikani, F. Golmohammad and S. Rowshanzamir, J. Food Eng., 80, 735 (2007).

    Article  CAS  Google Scholar 

  22. P. K. J. P.D. Wanasundara and F. Shahidi, J. Food Sci., 61, 604 (1996).

    Article  CAS  Google Scholar 

  23. I. S. Sanal, E. Bayraktar, U. U. Mehmetoglu and A. Calimli. J. Supercrit. Fluids, 34, 331 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guomin Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, L., Zhou, M., Pan, X. et al. Supercritical CO2 extraction and response surface optimization of ginkgolic acids from ginkgo biloba exopleura. Korean J. Chem. Eng. 32, 1649–1654 (2015). https://doi.org/10.1007/s11814-014-0363-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0363-1

Keywords

Navigation