Skip to main content
Log in

Lattice Boltzmann analysis of effect of heating location and Rayleigh number on natural convection in partially heated open ended cavity

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Natural convection characteristics of a partially heated open ended square cavity have been investigated numerically by using an in-house computational flow solver based on the passive scalar thermal lattice Boltzmann method (PS-TLBM) with D2Q9 (two-dimensional and nine-velocity link) lattice model. The partial part of left wall of the cavity is heated isothermally at either of the three different (bottom, middle and top) locations for the fixed heating length as half of characteristic length (H/2) while the right wall is open to the ambient conditions. The other parts of the cavity are thermally isolated. In particular, the influences of partial heating locations and Rayleigh number (103≤ Ra≤106) in the laminar zone on the local and global natural convection characteristics (such as streamline, vorticity and isotherm contours; centerline variations of velocity and temperature; and local and average Nusselt numbers) have been presented and discussed for the fixed value of the Prandtl number (Pr=0.71). The streamline patterns show qualitatively similar nature for all the three heating cases and Rayleigh numbers, except the change in the recirculation zone which is found to be largest for middle heating case. Isotherm patterns are shifted towards a partially heated wall on increasing Rayleigh number and/or shifting of heating location from bottom to top. Both the local and average Nusselt numbers, as anticipated, shown proportional increase with Rayleigh number. The cavity with middle heating location shown higher heat transfer rate than that for the top and bottom heating cases. Finally, the functional dependence of the average Nusselt number on flow governing parameters is also presented as a closure relationship for the best possible utilization in engineering practices and design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Jmai, B. Ben-beya and T. Lili, Superlattices and Microstructures, 53, 130 (2013).

    Article  CAS  Google Scholar 

  2. K.M. Gangawane, R.P. Bharti and S. Kumar, Thermal lattice Boltzmann methods: a review, in: Conference on Technological Advancements in Chemical and Environmental Engineering (TACEE-2012), Paper no. O270, BITS Pilani, Pilani, India, March 23–24 (2012).

    Google Scholar 

  3. K.M. Gangawane, R. P. Bharti and S. Kumar, Thermal analysis of natural convection in dierentially heated shallow cavities at dierent Rayleigh numbers by lattice Boltzmann approximation, in: Proceedings of 65th Annual Session of IIChE (CHEMCON-2012), International Conference on Sustainable Technologies for Energy and Environment in Process Industries and Indo-US Joint International Conference on Energy and Environment, Paper no. P-311, NIT Jalandhar, Jalandhar, India, December 27–30 (2012).

    Google Scholar 

  4. K.M. Gangawane, R. P. Bharti and S. Kumar, Lattice Boltzmann simulation of natural convection in a partially dierentially heated square enclosure, in: Proceedings of the 22nd National and 11th ISHMT-ASME Heat and Mass Transfer Conference, Paper no. HMTC1300114, IIT Kharagpur, Kharagpur, India, December 28–31 (2013).

    Google Scholar 

  5. K.M. Gangawane, R. P. Bharti and S. Kumar, Can. J. Chem. Eng., 93(4), 766 (2015).

    Article  CAS  Google Scholar 

  6. R. E. Spall, Int. J. Heat and Mass Transfer, 23, 115 (1996).

    Article  CAS  Google Scholar 

  7. E. Bilgen and A. Muftuoglu, Int. Commun. Heat Mass Transfer, 35, 545 (2008).

    Article  CAS  Google Scholar 

  8. T. H. Hsu and S. G. Wang, Numerical Heat Transfter, Part A: Appl., 38, 627 (2000).

    Article  CAS  Google Scholar 

  9. S.Q. Du, E. Bilgen and P. Vasseur, Int. J. Heat Mass Transfer, 34, 263 (1998).

    Article  CAS  Google Scholar 

  10. K. L. Hsiao, Appl. Therm. Eng., 27, 1895 (2007).

    Article  Google Scholar 

  11. S. Habib, C. Surry and A. Belghith, High Temperature Material Process, 9, 483 (2005).

    Article  Google Scholar 

  12. A. Hobbi and K. Siddiqui, Int. J. Heat Mass Transfer, 52, 4650 (2009).

    Article  CAS  Google Scholar 

  13. Y.A. Cengel and J.G. Afshin, Heat and Mass Transfer, McGraw Hill Higher Education, 2nd Ed. (2011).

    Google Scholar 

  14. A. Valencia and R. L. Frederick, Int. J. Heat Mass Transfer, 32(8), 1567 (1989).

    Article  CAS  Google Scholar 

  15. R. Begum and M.A. Basit, European Journal of Scientific Research, 22, 216 (2008).

    Google Scholar 

  16. H. Xi, G. Peng and S. H. Chou, Phys. Rev. E, 59, 6202 (1999).

    Article  CAS  Google Scholar 

  17. Y. Dong, J. Zhang and G. Yan, Applied Mathematical Modelling, 34, 481 (2010).

    Article  Google Scholar 

  18. F. J. Alexander, S. Chen and J.D. Sterling, Phys. Rev. E, 47, R2249 (1993).

    Article  Google Scholar 

  19. X. He, S. Chen and G.D. Doolen, J. Comput. Phys., 146, 282 (1998).

    Article  Google Scholar 

  20. Y. Peng, C. Shu and Y. Chew, Phys. Rev. E, 68(2), 026701 (2003).

    Article  CAS  Google Scholar 

  21. F. Kuznik, J. Vareilles, G. Rusaouen and G. Krauss, Int. J. Heat Fluid Flow, 28, 862 (2007).

    Article  CAS  Google Scholar 

  22. Z. Guo, C. Zheng, B. Shi and T. S. Zhao, Phys. Rev. E, 75, 1 (2007).

    Google Scholar 

  23. S. Chen and Z. Tian, Int. J. Heat Fluid Flow, 31, 227 (2010).

    Article  Google Scholar 

  24. C. B. Shin and D. J. Economou, Int. Commun. Heat Mass Transfer, 33(10), 2191 (1990).

    Article  CAS  Google Scholar 

  25. K. Vafai and J. Ettefagh, Int. Commun. Heat Mass Transfer, 33(10), 2329 (1990).

    Article  Google Scholar 

  26. C. Balaji and S. P. Venkateshan, Int. J. Heat Fluid Flow, 15(4), 317 (1994).

    Article  Google Scholar 

  27. A.A. Mohamad, Numerical Heat Transfter, Part A: Appl., 27, 705 (1995).

    Article  Google Scholar 

  28. D. Angirasa, J. G. M. Eggels and F.T. M. Nieuwstadt, Numerical Heat Transfter, Part A: Appl., 28, 755 (1995).

    Article  Google Scholar 

  29. K. Khanafer and K. Vafai, Int. J. Heat Mass Transfer, 43, 4087 (2000).

    Article  CAS  Google Scholar 

  30. K. Khanafer and K. Vafai, Int. J. Heat Mass Transfer, 45, 2527 (2002).

    Article  Google Scholar 

  31. O. Polat and E. Bilgen, Int. J. Therm. Sci., 41, 360 (2002).

    Article  Google Scholar 

  32. J. F. Hinojosa, R. E. Cabanillas, G. Alvarez and C. E. Estrada, Int. Commun. Heat Mass Transfer, 32(9), 1184 (2005).

    Article  CAS  Google Scholar 

  33. E. Bilgen and H. Oztop, Int. J. Heat Mass Transfer, 48(8), 1470 (2005).

    Article  Google Scholar 

  34. A.A. Mohamad, M. El-Ganaoui and R. Bennacer, Int. J. Therm. Sci., 48(10), 1870 (2009).

    Article  Google Scholar 

  35. H. Sajjadi, M. Gorji, G.R. Kefayati, D.D. Ganji and M. Shayannia, World Academy of Science, Engineering and Technology, 55, 265 (2010).

    Google Scholar 

  36. M. Prakash, S.B. Kedare and J.K. Nayak, Int. J. Therm. Sci., 51, 23 (2012).

    Article  Google Scholar 

  37. S. Chung and K. Vafai, Int. J. Heat Mass Transfer, 53, 2703 (2010).

    Article  Google Scholar 

  38. A. Haghshenas, M.R. Nasr and M. H. Rahimian, Int. J. Heat Mass Transfer, 53, 1513 (2010).

    Article  Google Scholar 

  39. G. R. Kefayati, Int. Commun. Heat Mass Transfer, 40, 67 (2013).

    Article  CAS  Google Scholar 

  40. M. Sankar, M. Bhuvaneswari, S. Sivasankaran and Y. Do, Int. J. Heat Mass Transfer, 54, 5173 (2011).

    Article  Google Scholar 

  41. M. M. Rahman, H. F. Oztop, R. Saidur, S. Mekhilef and K. Al- Salem, Comput. Fluids, 79, 53 (2013).

    Article  Google Scholar 

  42. R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport Phenomena, John Wiley & Sons, Inc., 2nd Ed. (2006).

    Google Scholar 

  43. R. P. Chhabra and J. F. Richardson, Non-Newtonian Flow and Applied Rheology, Butterworth-Heinemann, Oxford, UK, 2nd Ed. (2008).

    Google Scholar 

  44. W. M. Deen, Analysis of Transport Phenomena, Oxford University Press, 2nd Ed. (2013).

    Google Scholar 

  45. A.T. Srinivas, R. P. Bharti and R. P. Chhabra, Ind. Eng. Chem. Res., 48, 9735 (2009).

    Article  CAS  Google Scholar 

  46. A. Bejan, Convective Heat Transfer, John Wiley & Sons, Inc., 3rd Ed. (2004).

    Google Scholar 

  47. E. Fattahi, M. Farhadi and K. Sedighi, Int. J. Therm. Sci., 49, 2353 (2010).

    Article  Google Scholar 

  48. E. Fattahi, M. Farhadi, K. Sedighi and H. Nemati, Int. J. Therm. Sci., 52, 137 (2012).

    Article  CAS  Google Scholar 

  49. R. P. Bharti, R. P. Chhabra and V. Eswaran, Heat Mass Transfer, 43(7), 639 (2007).

    Article  Google Scholar 

  50. R. P. Bharti, R. P. Chhabra and V. Eswaran, Int. J. Heat Mass Transfer, 50(5–6), 977 (2007).

    Article  Google Scholar 

  51. R. P. Bharti, R. P. Chhabra and V. Eswaran, Chem. Eng. Sci., 62(7), 4729 (2007).

    Article  CAS  Google Scholar 

  52. R.P. Bharti, P. Sivakumar and R.P. Chhabra, Int. J. Heat Mass Transfer, 51(7–8), 1838 (2008).

    Article  CAS  Google Scholar 

  53. Y. L. Chan and C. L. Tien, Numerical Heat Transfter, Part A: Appl., 8, 65 (1985).

    Google Scholar 

  54. S. Chen and G.D. Doolen, Annual Reviews of Fluid Mechanics, 30, 329 (1998).

    Article  Google Scholar 

  55. Y. Peng, C. Shu and Y. Chew, J. Comput. Phys., 193(1), 260 (2004).

    Article  CAS  Google Scholar 

  56. Q. Zou and X. He, Phys. Fluids, 9, 1591 (1997).

    Article  CAS  Google Scholar 

  57. Y. He, C. Qi, Y. Hu, B. Qin, F. Li and Y. Ding, Nanoscale Res. Lett., 6, 1 (2011).

    Google Scholar 

  58. P. J. Dellar, Nanoscale Res. Lett., 190, 351 (2013).

    Google Scholar 

  59. R.P. Bharti, R.P. Chhabra and V. Eswaran, Canadian J. Chem. Eng., 84(4), 406 (2006).

    Article  CAS  Google Scholar 

  60. P. Sivakumar, R. P. Bharti and R. P. Chhabra, Chem. Eng. Sci., 61(18), 6035 (2006).

    Article  CAS  Google Scholar 

  61. P. Sivakumar, R. P. Bharti and R. P. Chhabra, Chem. Eng. Sci., 62(6), 1682 (2007).

    Article  CAS  Google Scholar 

  62. R. P. Bharti, R. P. Chhabra and V. Eswaran, Ind. Eng. Chem. Res., 46(11), 3820 (2007).

    Article  CAS  Google Scholar 

  63. R. C. Patil, R. P. Bharti and R. P. Chhabra, Ind. Eng. Chem. Res., 47(5), 1660 (2008).

    Article  CAS  Google Scholar 

  64. R. C. Patil, R. P. Bharti and R. P. Chhabra, Ind. Eng. Chem. Res., 47(23), 9141 (2008).

    Article  CAS  Google Scholar 

  65. F. B. Tian, R. P. Bharti and Y. Q. Xu, Comput. Mech., 53(2), 257 (2014).

    Article  Google Scholar 

  66. K.M. Gangawane, R. P. Bharti and S. Kumar, J. Taiwan Inst. Chem. Eng. (2015), DOI:10.1016/j.jtice.2014.11.020.

    Google Scholar 

  67. K. Stephan and M. Abdelsalam, Int. J. Heat Mass Transfer, 23, 73 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Prakash Bharti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gangawane, K.M., Bharti, R.P. & Kumar, S. Lattice Boltzmann analysis of effect of heating location and Rayleigh number on natural convection in partially heated open ended cavity. Korean J. Chem. Eng. 32, 1498–1514 (2015). https://doi.org/10.1007/s11814-014-0361-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0361-3

Keywords

Navigation