Skip to main content

Gas-liquid mass transfer coefficient of methane in bubble column reactor

Abstract

Biological conversion of methane gas has been attracting considerable recent interest. However, methanotropic bioreactor is limited by low solubility of methane gas in aqueous solution. Although a large mass transfer coefficient of methane in water could possibly overcome this limitation, no dissolved methane probe in aqueous environment is commercially available. We have developed a reactor enabling the measurement of aqueous phase methane concentration and mass transfer coefficient (k L a). The feasibility of the new reactor was demonstrated by measuring k L a values as a function of spinning rate of impeller and flow rate of methane gas. Especially, at spinning rate of 300 rpm and flow rate of 3.0 L/min, a large k L a value of 102.9 h−1 was obtained.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    S. Naik, V. Goud, P. Rout and A. Dalai, Renew. Sust. Energy Rev., 14, 578 (2010).

    CAS  Article  Google Scholar 

  2. 2.

    I. Dubois, Curr. Opin. Environ., 3, 11 (2011).

    Article  Google Scholar 

  3. 3.

    E. Novaes, M. Kirst, V. Chiang, H. Sederoff and R. Sederoff, Plant Phys., 154, 555 (2010).

    CAS  Article  Google Scholar 

  4. 4.

    A. Henstra, J. Sipma, A. Rinzema and A. Stams, Curr. Opin. Biotechnol., 18, 200 (2007).

    CAS  Article  Google Scholar 

  5. 5.

    S. L. Montgomery, D. M. Jarvie, K. A. Bowker and R. M. Pallastro, Am. Assoc. Pet. Geol. Bull., 89, 155 (2005).

    Google Scholar 

  6. 6.

    D. J. K. Ross and R. M. Bustin, Mar. Petrol. Geol., 26, 916 (2005).

    Article  Google Scholar 

  7. 7.

    D. Park and J. Lee, Korean J. Chem. Eng., 30, 977 (2013).

    CAS  Article  Google Scholar 

  8. 8.

    S. A. Morris, S. Radajewski, T. W. Willison and J. Colin Murrel, Appl. Environ. Microbiol., 68, 1446 (2002).

    CAS  Article  Google Scholar 

  9. 9.

    G. M. King and A. P. S. Adamsen, Appl. Environ. Microbiol., 58, 2758 (1992).

    CAS  Google Scholar 

  10. 10.

    A. Pol, K. Heijmans, H. R. Harhangi, D. Tedesco, M. S. M. Jetten and H. J. M. Op den Camp, Nature, 450, 874 (2007).

    CAS  Article  Google Scholar 

  11. 11.

    U. Setzmann, W. Wagner and A. Pruss, J. Phys. Chem. Ref. Data, 20, 1061 (2001).

    Article  Google Scholar 

  12. 12.

    H. C. Helgeson, L. Richard, W. McKenzie, D. L. Norton and A. Schmitt, Geochim. Cosmochim. Ac., 73, 594 (2009).

    CAS  Article  Google Scholar 

  13. 13.

    Z. Duan’ and S. Mao, Geochim. Cosmochim. Ac., 70, 3369 (2006).

    Article  Google Scholar 

  14. 14.

    Z. Duan, N. Møller, J. Greenberg and J. H. Weare, Geochim. Cosmochim. Ac., 56, 1451 (1992).

    CAS  Article  Google Scholar 

  15. 15.

    K. Akita and F. Yoshidal, Ind. Eng. Chem. Proc. Des. Dev., 12, 76 (1973).

    CAS  Article  Google Scholar 

  16. 16.

    S. Park, M. Yasin, D. Kim, H. Park, C. Kang, D. Kim and I. Chang, Ind. Microbiol. Biotechnol., 40, 995 (2013).

    CAS  Article  Google Scholar 

  17. 17.

    S. Riggs and T. Heindel, Biotechnol. Prog., 22, 903 (2006).

    CAS  Article  Google Scholar 

  18. 18.

    K. V. Riet, Ind. Eng. Chem. Proc. Des. Dev., 18, 357 (1979).

    Article  Google Scholar 

  19. 19.

    Y. Yu, J. A. Ramsay and B. A. Ramsay, Biotechnol. Bioeng., 95, 788 (2006).

    CAS  Article  Google Scholar 

  20. 20.

    S. Yamamoto, J. B. Alcauskas and T. E. Crozier, J. Chem. Eng. Data, 2, 1 (1976).

    Google Scholar 

  21. 21.

    A. Karimi, F. Golbabaei, M. R. Mehrnia, M. Neghab, K. Mohammad, A. Nikpey and M. R. Pourmand, Iranian J. Environ. Health Sci. Eng., 10, 1 (2013).

    Article  Google Scholar 

  22. 22.

    M. Martin, F. Montes and M. Gala, Chem. Eng. Sci., 63, 3223 (2008).

    CAS  Article  Google Scholar 

  23. 23.

    M. Fujasova, V. Linek and T. Moucha, Chem. Eng. Sci., 62, 1650 (2007).

    CAS  Article  Google Scholar 

  24. 24.

    M. Puthli, V. Rathod and A. Pandit, Biochem. Eng. J., 23, 25 (2005).

    CAS  Article  Google Scholar 

  25. 25.

    S. Arjunwadkar, K. Sarvanan, P. Kulkarni and A. Pandit, Biochem. Eng. J., 1, 99 (1998).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Jinwon Lee or Choongik Kim.

Additional information

This article is dedicated to Prof. Hwayong Kim on the occasion of his retirement from Seoul National Univerisity.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Yasin, M., Park, S. et al. Gas-liquid mass transfer coefficient of methane in bubble column reactor. Korean J. Chem. Eng. 32, 1060–1063 (2015). https://doi.org/10.1007/s11814-014-0341-7

Download citation

Keywords

  • Methane
  • Mass Transfer Coefficient
  • Bubble Column Reactor
  • Shale Gas