Skip to main content
Log in

Experimental and theoretical investigation of a new multistage countercurrent melt crystallizer with inclined sieve plates

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A new multistage countercurrent melt crystallizer with sieve plates is proposed that combines the advantages of the TNO column crystallizer and the inclined column crystallizer. With the naphthalene-indene solid solution system, the purification process of organic materials in the new multistage countercurrent melt crystallizer with sieve plates under total reflux was investigated. Two of the influencing factors on the separation and purification performance in the new multistage countercurrent melt crystallizer with sieve plates were crystal settling velocity and crystal breakage, which were controlled by stirring speed, the sieve plates, the angle of the sieve plates, the diameter of the pores, particle sedimentation area, and the number of plates. The results of this study show that the optimum stirring speed was determined to be 20 rpm, sieve plates can obviously increase the separation and purification effect, the optimum angle of the sieve plates was determined to be 45o, the optimum diameter of the pores was determined to be 8 mm, the optimum particle sedimentation area was determined to be 0.5 r, and two plates in the crystallizer were shown to be the best.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. G. Devyatykh, Yu. E. Elliev and A. N. Gur’yanov, Dokl. Acad. Nauk SSSR, 204, 917 (1972).

    CAS  Google Scholar 

  2. G. G. Devyatykh, V. M. Vorotyntsev, V. M. Malyshev and V. B. Karakisn, Dokl. Acad. Nauk SSSR, 297, 396 (1987).

    CAS  Google Scholar 

  3. Q. Li, Z. Yi, X. Sun and M. Su, Korean J. Chem. Eng., 27, 619 (2010).

    Article  CAS  Google Scholar 

  4. S. K. Myasnikov, A. D. Uteshinsky and N. N. Kulov, Theor. Found. Chem. Eng., 41, 124 (2007).

    Article  CAS  Google Scholar 

  5. G. J. Arkenbout, A. V. Kuijk and W. M. Smit, Chem. Ind., 3, 139 (1973).

    Google Scholar 

  6. M. Matsuoka, H. Takiyama and O. Soutome, Chem. Eng. Res. Des. Trans. Inst. Chem. Eng. A, 75, 206 (1997).

    Article  CAS  Google Scholar 

  7. Boycott A. E. Sedimentation of blood corpuscles [J]. Nature, 104, 532 (1920).

    Article  CAS  Google Scholar 

  8. K. Funakoshi, H. Uchida, H. Takiyama and M. Matsuoka, J. Cryst. Growth, 237, 2251 (2002).

    Article  Google Scholar 

  9. L. Chen, J. Li and M. Li Ind. Eng. Chem. Res., 45, 2818 (2006).

    Article  CAS  Google Scholar 

  10. R. Albertins and J. E. Powers, AIChE J., 15, 554 (1969).

    Article  CAS  Google Scholar 

  11. J. D. Henry and J. E. Powers, AIChE J., 16, 1055 (1970).

    Article  CAS  Google Scholar 

  12. W. C. Gates and J E. Powers, AIChE J., 16, 648 (1970).

    Article  CAS  Google Scholar 

  13. M. Matsuoka, T. Fukuda, Y. Takagi and H. Takiyama, J. Chem. Eng. Jpn., 28, 562 (1995).

    Article  CAS  Google Scholar 

  14. M. Matsuoka, T. Fukuda, Y. Takagi and H. Takiyama, J. Cryst. Growth, 166, 1035 (1996).

    Article  CAS  Google Scholar 

  15. M. Matsuoka and A. Sumitani, J. Chem. Eng. Jpn., 21, 6 (1988).

    Article  CAS  Google Scholar 

  16. M. Matsuoka, M. Ohishi and S. Kasama, J. Chem. Eng. Jpn., 19, 181 (1986).

    Article  CAS  Google Scholar 

  17. P. Bolsaitis, Chem. Eng. Sci., 24, 1813 (1969).

    Article  CAS  Google Scholar 

  18. C. G. Moyers and J. H. Olson, AIChE J., 20, 1118 (1974).

    Article  CAS  Google Scholar 

  19. M. R. Player, Ind. Eng. Chem. Process Dev., 8, 210 (1969).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixin Qu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Zhao, G., Du, Y. et al. Experimental and theoretical investigation of a new multistage countercurrent melt crystallizer with inclined sieve plates. Korean J. Chem. Eng. 32, 1151–1157 (2015). https://doi.org/10.1007/s11814-014-0312-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0312-z

Keywords

Navigation