Abstract
The adsorption capabilities of Syzygium cumini leaves were investigated for crystal violet and eosin B using batch adsorption method. Removal conditions were optimized by varying operational parameters like pH, dose of adsorbent, contact time and temperature. Presence of salts had a profound effect on the adsorption and the experimental data for both adsorbates, providing good correlation with the Temkin, Langmuir and Freundlich patterns, but differing from Dubinin-Radushkevich model. Maximum adsorption capacity was found to be 38.75 mg/g for crystal violet and 16.28mg/g for eosin B respectively. Boyd-Adamson-Myers, Morris-Weber and Bangham’s surface mass transport models revealed that film diffusion was the rate controlling process and followed pseudo-second order kinetics. Activation energy was estimated to be 57.265 and 6.721 kJ/mol for crystal violet and eosin B respectively. Adsorption of crystal violet is endothermic and that of Eosin B is exothermic but both were spontaneous at all temperatures. To study the bulk removal of the dyes, column operations were made. The exhausted columns were regenerated by eluting HCl solution and almost 91.94% of CV and 58.08% of EB were recovered from columns, respectively.
This is a preview of subscription content, access via your institution.
References
T. Puzyn, Organic pollutants ten years after the stockholm convention- environmental and analytical update, InTech, Rijeka (2012).
T. Robinson, G. McMullan, R. Marchant and P. Nigam, Bioresour. Technol., 77, 247 (2001).
M. A. Mottaleb and D. Littlejohn, Anal. Sci., 17, 429 (2001).
A. Baban, A. Yediler and N. K. Ciliz, Clean: Soil, Air, Water, 38, 84 (2010).
S. Wang, Y. Boyjoo, A. Choueib and Z. H. Zhu, Water Res., 39, 129 (2005).
O. J. Hao, H. Kim and P.-C. Chiang, Crit. Rev. Env. Sci. Technol., 30, 449 (2000).
N. Willmott, J. Guthrie and G. Nelson, J. Soc. Dyers Colour., 114, 38 (1998).
M. Rafatullah, O. Sulaiman, R. Hashim and A. Ahmad, J. Hazard. Mater., 177, 70 (2010).
C.R. Silva, T.F. Gomes, G.C.R.M. Andrade, S.H. Monteiro, A.C.R. Dias, E. A. G. Zagatto and V. L. Tornisielo, J. Agric. Food Chem., 61, 2358 (2013).
C. G. Rocha, D. A. M. Zaia, R.V. d. S. Alfaya and A. A. d. S. Alfaya, J. Hazard. Mater., 166, 383 (2009).
M. Arami, N.Y. Limaee, N. M. Mahmoodi and N. S. Tabrizi, J. Colloid Interface Sci., 288, 371 (2005).
E. Rubin, P. Rodriguez, R. Herrero, J. Cremades, I. Barbara and M.E. Sastre de Vicente, J. Chem. Technol. Biotechnol., 80, 291 (2005).
N. S. Maurya, A. K. Mittal, P. Cornel and E. Rother, Bioresour. Technol., 97, 512 (2006).
K.S. Low, C.K. Lee and L.L. Heng, Environ. Technol., 15, 115 (1994).
Y.S. Ho, D.A. J. Wase and C.F. Forster, Environ. Technol., 17, 71 (1996).
W. Zou, H. Bai, S. Gao and K. Li, Korean J. Chem. Eng., 30, 111 (2013).
G. Mishra and M. A. Tripathy, Colourage, 40, 35 (1993).
C. Moran, M. E. Hall and R. Howell, J. Soc. Dyers Colour., 113, 272 (1997).
F. Akbal, J. Colloid Interface Sci., 286, 455 (2005).
S. Chakraborty, S. Chowdhury and P. Das Saha, Carbohydr. Polym., 86, 1533 (2011).
K. J. Laidler, Chemical kinetics, Harper & Row, New York (1987).
M.M. Dubinin and L.V. Radushkevich, Chem. Zentr, 1, 875 (1947).
M. Akhtar, M. I. Bhanger, S. Iqbal and S.M. Hasany, J. Hazard. Mater., 128, 44 (2006).
H. M. F. Freundlich, J. Phys. Chem., 57, 385 (1906).
M. I. Temkin and V. Pyzhev, Acta Physiochem (URSS), 12, 327 (1940).
A. Buasri, N. Chaiyut, K. Tapang, S. Jaroensin and S. Panphrom, Int. J. Env. Sci. Dev., 3, 10 (2012).
I. Langmuir, J. Am. Chem. Soc., 38, 2221 (1916).
G. McKay, H. S. Blair and J.R. Gardner, J. Appl. Polym. Sci., 29, 1499 (1984).
Z. Zawani, A. L. Chuah and T. S.Y. Choong, Eur. J. Sci. Res., 37, 63 (2009).
S. Lagergren, K. Svenska Vetenskapsakad. Handl., 24, 1 (1898).
M.A. Abd El-Ghaffar, M. H. Mohamed and K. Z. Elwakeel, Chem. Eng. J., 151, 30 (2009).
Y. S. Ho and G. McKay, Process Biochem. (Amsterdam, Neth.), 34, 451 (1999).
F.-C. Wu, R.-L. Tseng, S.-C. Huang and R.-S. Juang, Chem. Eng. J., 151, 1 (2009).
W. J. Weber and J. C. Morris, J. Sanit. Eng. Div. ASCE, 89, 31 (1963).
G.E. Boyd, A.W. Adamson and L. S. Myers, J. Am. Chem. Soc., 69, 2836 (1947).
D. Reichenberg, J. Am. Chem. Soc., 75, 589 (1953).
D. H. Bangham and F. P. Burt, Proc. R. Soc. A., 105, 481 (1924).
M. Mufazzal Saeed, S. Moosa Hasany and M. Ahmed, Talanta, 50, 625 (1999).
K. Rao, S. Anand and P. Venkateswarlu, Korean J. Chem. Eng., 27, 1547 (2010).
A. Saeed, M. Sharif and M. Iqbal, J. Hazard. Mater., 179, 564 (2010).
S. Jain and R. V. Jayaram, Desalination, 250, 921 (2010).
D.M. Ruthven, Principles of Adsorption and Adsorption Processes, Wiley, New York (1984).
R. Ahmad, J. Hazard. Mater., 171, 767 (2009).
O. Aksakal and H. Ucun, J. Hazard. Mater., 181, 666 (2010).
G. Crini, H. N. Peindy, F. Gimbert and C. Robert, Sep. Purif. Technol., 53, 97 (2007).
Y. S. Ho and C. C. Chiang, Adsorption, 7, 139 (2001).
J. Mattson and H. Mark, Activated carbon: Surface chemistry and adsorption from solution, Marcel Dekker, Inc., New York (1971).
S. Faust and O. Aly, Adsorption processes for water treatment, Butterworth Publishers, Stoneham (1987).
S. Netpradit, P. Thiravetyan and S. Towprayoon, J. Colloid Interface Sci., 270, 255 (2004).
R.F.P.M. Moreira, N.C. Kuhnen and M.G. Peruch, Latin. Am. Appl. Res., 28, 37 (1998).
S. Patil, V. Deshmukh, S. Renukdas and N. Patel, Int. J. Env. Sci., 1, 1116 (2011).
C. Namasivayam and D. Kavitha, Dyes Pigm., 54, 47 (2002).
Y. Guo, J. Zhao, H. Zhang, S. Yang, J. Qi, Z. Wang and H. Xu, Dyes Pigm., 66, 123 (2005).
A.W.M. Ip, J.P. Barford and G. McKay, J. Colloid Interface Sci., 337, 32 (2009).
Y. Hu, T. Guo, X. Ye, Q. Li, M. Guo, H. Liu and Z. Wu, Chem. Eng. J., 228, 392 (2013).
M. Alkan, Ö. Demirbas and M. Doğan, Fresenius Environ. Bull., 13, 1112 (2004).
L.A. Sepulveda and C. C. Santana, Environ. Technol., 34, 967 (2012).
S. Chowdhury and P. Saha, Carbohydr. Polym., 86, 1533 (2011).
Y. S. Al-Degs, M. I. El-Barghouthi, A. H. El-Sheikh and G. M. Walker, Dyes Pigm., 77, 16 (2008).
C. H. Giles, D. Smith and A. Huitson, J. Colloid Interface Sci., 47, 755 (1974).
C. Aharoni and D. L. Sparks, Kinetics of Soil Chemical Reactions—A Theoretical Treatment, Rates of Soil Chemical Processes, Sssaspecialpubl, 1 (1991).
P. King, N. Rakesh, S. Beenalahari, Y. Prasanna Kumar and V.S.R.K. Prasad, J. Hazard. Mater., 142, 340 (2007).
E. Tütem, R. Apak and Ç. F. Ünal, Water Res., 32, 2315 (1998).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mehmood, A., Bano, S., Fahim, A. et al. Efficient removal of crystal violet and eosin B from aqueous solution using Syzygium cumini leaves: A comparative study of acidic and basic dyes on a single adsorbent. Korean J. Chem. Eng. 32, 882–895 (2015). https://doi.org/10.1007/s11814-014-0308-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11814-014-0308-8
Keywords
- Dyes
- Crystal Violet
- Eosin B
- Adsorption
- Syzygium cumini
- Surface Mass Transport