Skip to main content
Log in

Kinetics of thermal decomposition of ε-hexanitrohexaazaisowurtzitane by TG-DSC-MS-FTIR

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Thermal decomposition of ε-hexanitrohexaazaisowurtzitane (HNIW) was studied by thermogravimetry-differential scanning calorimetry-mass spectrometry-Fourier transform infrared spectroscopy (TG-DSC-MS-FTIR) simultaneous analysis. It has been shown that there is a crystal transition point for ε-HNIW, and only a single decomposition process has been observed for HNIW. The kinetic parameters of thermal decomposition of HNIW were obtained by Kissinger and Flynn-Wall-Ozawa methods, indicating that HNIW has the higher reactivity compared to the other nitramines. The HNIW decomposition mechanism demonstrated by the non-isothermal kinetics conformed to Avrami-Erofeev equation with the factor of nucleus growth of n=1/3 and the conversion degree of α from 0.1 to 0.7. The MS and FTIR analyses indicated that the thermal decomposition of HNIW favors N-N bond cleavage over C-N bond cleavage as the rate determining step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. E. Kissinger, Anal. Chem., 29, 1702 (1957).

    Article  CAS  Google Scholar 

  2. J.-S. Lee and K.-S. Jaw, J. Therm. Anal. Calorim., 85(2), 463 (2006).

    Article  CAS  Google Scholar 

  3. N.H. Naika, G.M. Gorea, B.R. Gandheb and A.K. Sikder, J. Hazard. Mater., 159, 630 (2008).

    Article  Google Scholar 

  4. G. Liptay, J. Nagy, A. Borbély-Kuszmann and J. Ch. Weil, J. Therm. Anal. Cal., 32, 1683 (1987).

    Article  CAS  Google Scholar 

  5. R. Liu, Z. Zhou, Y. Yin, L. Yang and T. Zhang, Thermochim. Acta, 537, 13 (2012).

    Article  CAS  Google Scholar 

  6. X.-L. Xing, F.-Q. Zhao, S.-N. Ma, S.-Y. Xu, L.-B. Xiao, H.-X. Gao and R.-Z. Hu, J. Therm. Anal. Calorim., 110, 1451 (2012).

    Article  CAS  Google Scholar 

  7. S. Okovytyy, Y. Kholod, M. Qasim, H. Fredrickson and J. Leszczynski, J. Phys. Chem. A., 109(12), 12964 (2005).

    Article  Google Scholar 

  8. X. Xu, H. Xiao, J. Xiao, W. Zhu, H. Huang and J. Li, J. Phys. Chem. B., 110, 7203 (2006).

    Article  CAS  Google Scholar 

  9. D.C. Sorescu and B.M. Rice, J. Phys. Chem. B., 102(6), 948 (1998).

    Article  CAS  Google Scholar 

  10. B. L. Korsounskii, V. V. Nedelko, N. V. Chukanov, T. S. Larikova and F. Volk, Russ. Chem. Bull., 49(5), 812 (2000).

    Article  CAS  Google Scholar 

  11. R. Yang, H. An and H. Tan, Combust. Flame, 135, 463 (2003).

    Article  CAS  Google Scholar 

  12. D. G. Patil and T. B. Brill, Combust. Flame, 87, 145 (1991).

    Article  CAS  Google Scholar 

  13. R. Turcotte, M. Vachon, Q.S.M. Kwok, R. Wang and D.E.G. Jones, Thermochim. Acta, 433, 105 (2005).

    Article  CAS  Google Scholar 

  14. V. V. Nedelko, N. V. Chukanov, A. V. Raevskii, B. L. Korsounskii, T. S. Larikova and O. I. Kolesova, Propellants, Explosives, Pyrotechnics, 25, 255 (2000).

    Article  CAS  Google Scholar 

  15. Q.-L. Yan, S. Zeman, A. Elbeih and Z.-W. Song, J. Therm. Anal. Calorim., 112, 823 (2013).

    Article  CAS  Google Scholar 

  16. X. Jiang, X. Guo, H. Ren, Y. Zhu and Q. Jiao, J. Chem. Eng. Jpn., 45(6), 380 (2012).

    Article  CAS  Google Scholar 

  17. X. Jiang, X. Guo, H. Ren and Q. Jiao, Central European Journal of Energetic Materials, 9(3), 139 (2012).

    Google Scholar 

  18. Y.L. Ren, B.W. Cheng, J. S. Zhang, A.B. Jiang and W.L. Fu, Chem. Res. Chinese Universities, 24(5), 628 (2008).

    Article  CAS  Google Scholar 

  19. Ch. An, X. Geng and J. Wang, Sci. Tech. Energetic Materials, 73(5–6), 175 (2012).

    Google Scholar 

  20. S. Löbbecke, M. A. Bohn, A. Pfeil and H. Krause, 29th International Annual Conference of ICT, 145, Karlsruhe, Germany (1998).

    Google Scholar 

  21. T. Ozawa, J. Therm. Anal., 2, 301 (1970).

    Article  CAS  Google Scholar 

  22. R.Z. Hu, S.L. Gao, F.Q. Zhao, Q.Z. Shi, T.L. Zhang and J. J. Zhang, Thermal analysis kinetics, Second Ed., Beijing, Science Press (2008) (In Chinese).

    Google Scholar 

  23. J. R. MacCallum and J. Tanner, Eur. Polym. J., 6, 907 (1970).

    Article  CAS  Google Scholar 

  24. A.W. Coats and J. P. Redfern, Nature, 201, 68 (1964).

    Article  CAS  Google Scholar 

  25. V. Šatava and J. J. Šesták, J. Therm. Anal., 8, 477 (1975).

    Article  Google Scholar 

  26. Z.Q. Yang, R.Z. Hu, Y.J. Liang and X.D. Li, Acta Phys. Chim. Sinica, 2(1), 13 (1986).

    CAS  Google Scholar 

  27. J. H. Kim and Y. J. Yim, J. Chem. Eng. Jpn., 32(2), 237 (1999).

    Article  CAS  Google Scholar 

  28. P. J. Brush, Temperature Jump/Fourier transform Infrared Spectroscopy: A Noval Method for Investigation the Chemistry of a Burning Surface, University of Delaware (1993).

    Google Scholar 

  29. S. T. Thynell, P. E. Gongwer and T. B. Brill, J. Propul. Power, 12(5), 933 (1996).

    Article  CAS  Google Scholar 

  30. Y.-L. Zhu, H. Huang, H. Ren and Q.-J. Jiao, J. Energy Mater., 31, 178 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Li Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, YL., Shan, MX., Xiao, ZX. et al. Kinetics of thermal decomposition of ε-hexanitrohexaazaisowurtzitane by TG-DSC-MS-FTIR. Korean J. Chem. Eng. 32, 1164–1169 (2015). https://doi.org/10.1007/s11814-014-0305-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0305-y

Keywords

Navigation