Skip to main content
Log in

A real-time model based on least squares support vector machines and output bias update for the prediction of NO x emission from coal-fired power plant

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The accurate and reliable real-time estimation of NOx emission is indispensable for the implementation of successful control and optimization of NOx emission from a coal-fired power plant. We apply a real-time update scheme to least squares support vector machines (LSSVM) to build a real-time version for real-time prediction of NOx. Incorporation of LSSVM in the update scheme enhances its generalization ability for long-term predictions. The proposed real-time model based on LSSVM (LSSVM-scheme) is applied to NOx emission process data from a coal-fired power plant in Korea to compare the prediction performance of NOx emission with real-time model based on partial least squares (PLS-scheme). Prediction results show that LSSVM-scheme predicts robustly for a long passage of time with higher accuracy in comparison with PLS-scheme. We also present a user friendly and sophisticated graphical user interface to enhance the convenience to approach the features of real-time LSSVM-scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Zhou, K. Cen and J. Fan, Energy, 29, 167 (2004).

    Article  CAS  Google Scholar 

  2. Z. Ligang, J. Hailin, Y. Minggao and Y. Minggao, Bioinformatics and Biomedical Engineering (iCBBE), 2010 4 th International Conference on, 1 (2010).

    Google Scholar 

  3. S. Matsumura, T. Iwahara, K. Ogata, S. Fujii and M. Suzuki, Control Eng. Pract., 6, 1267 (1998).

    Article  Google Scholar 

  4. J. Sjöberg, Q. Zhang, L. Ljung, A. Benveniste, B. Delyon, P. Glorennec, H. Hjalmarsson and A. Juditsky, Automatica, 12, 1691 (1995).

    Article  Google Scholar 

  5. K. Li, S. Thompson and J. Peng, Control Eng. Prac., 12, 707 (2004).

    Article  Google Scholar 

  6. Y. Lv, J. Liu and T. Yang, Ind. Eng. Chem. Res., 51(49), 16092 (2012).

    Article  CAS  Google Scholar 

  7. Y.K. Lee, M. Kim and C. Han, J. Environ. Eng., 131, 961 (2005).

    Article  CAS  Google Scholar 

  8. T. Adali, B. Bakal, M.K. SÖNmez and R. Fakory, Integr Comput- Aid E, 6, 27 (1999).

    Google Scholar 

  9. F. Wu, H. Zhou, T. Ren, L. Zheng and K. Cen, Fuel, 88, 1864 (2009).

    Article  CAS  Google Scholar 

  10. S. Hui, Power and Energy Engineering Conference (APPEEC), 2012 Asia-Pacific, 1 (2012).

    Google Scholar 

  11. V. Vapnik, The nature of statistical learning theory, Springer Verlag, New York (1995).

    Book  Google Scholar 

  12. J.A.K. Suykens and J. Vandewalle, Neural Processing Letters, 9, 293 (1999).

    Article  Google Scholar 

  13. L. Sheng, and Y. Zhen, Industrial Engineering and Engineering Management (IE&EM), 2011 IEEE 18 th International Conference on, 1732 (2011).

    Google Scholar 

  14. S. Tatinati, Y. Wang, G. Shafiq and K.C. Veluvolu, Conf. Proc. IEEE Eng. Med. Biol. Soc., 6043 (2013).

    Google Scholar 

  15. A. Niazi, S. Sharifi and E. Amjadi, J. Electroanal. Chem., 623, 86 (2008).

    Article  CAS  Google Scholar 

  16. A. Niazi, M. Goodarzi and A. Yazdanipour, J. Brazilian Chemical Society, 19, 536 (2008).

    Article  CAS  Google Scholar 

  17. R. M. Balabin and E. I. Lomakina, Analyst, 136, 1703 (2011).

    Article  CAS  Google Scholar 

  18. F. Ahmed, S. Nazir and Y.K. Yeo, Korean J. Chem. Eng., 26(1), 14 (2009).

    Article  CAS  Google Scholar 

  19. C. Cortes and V. Vapnik, Mach Learn, 20, 273 (1995).

    Google Scholar 

  20. K. Helland, H.E. Berntsen, O.S. Borgen and H. Martens, Chemom. Intell. Lab. Syst., 14, 129 (1992).

    Article  CAS  Google Scholar 

  21. S. Mu, Y. Zeng, R. Liu, P. Wu, H. Su and J. Chu, J. Process Contr., 16, 557 (2006).

    Article  CAS  Google Scholar 

  22. H. Kaneko and K. Funatsu, J. Chem. Eng. Japan, 46, 219 (2013).

    Article  CAS  Google Scholar 

  23. R. Sharmin, U. Sundararaj, S. Shah, L.V. Griend and Y. Sun, Chem. Eng. Sci., 61, 6372 (2006).

    Article  CAS  Google Scholar 

  24. H. Kubinyi, “Qsar in drug design,” Handbook of Chemoinformatics, Wiley-VCH Verlag GmbH, 1532 (2008).

    Google Scholar 

  25. C. Rücker, G. Rücker and M. Meringer, J. Chem. Inf. Model., 47, 2345 (2007).

    Article  Google Scholar 

  26. P. Geladi and B.R. Kowalski, Anal. Chim. Acta, 185, 1 (1986).

    Article  CAS  Google Scholar 

  27. P. Kennedy, A guide to econometrics, MIT Press (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeong Koo Yeo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, F., Cho, H.J., Kim, J.K. et al. A real-time model based on least squares support vector machines and output bias update for the prediction of NO x emission from coal-fired power plant. Korean J. Chem. Eng. 32, 1029–1036 (2015). https://doi.org/10.1007/s11814-014-0301-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0301-2

Keywords

Navigation